首页> 外文OA文献 >Linearized-Boltzmann-type-equation-based finite difference method for thermal incompressible flow
【2h】

Linearized-Boltzmann-type-equation-based finite difference method for thermal incompressible flow

机译:基于线性玻尔兹曼类型方程的热不可压缩流有限差分法

摘要

This study reports on further development of a finite difference method formulated on the basis of a linearized-Boltzmann-type-equation for thermal incompressible flows with external body force effect. In classical lattice Boltzmann methods, a pressure-density relation, and/or a finite Mach number, no matter how small, are required in the solution of the linearized Boltzmann-type equation, thus generating inherent compressibility error unavoidably. In the present approach, the pressure field is determined by a pressure-correction method to ensure incompressibility, thus the approach is valid for both liquid and incompressible gas flows. A variety of thermal laminar incompressible flows, such as Couette flow, falling thin liquid film flow, fluid flow through porous plates, and two- and three-dimensional natural convection flow are simulated. The results compared extremely well with analytical solutions and other known numerical simulations of the thermal incompressible flows investigated.
机译:这项研究报告了进一步发展有限差分方法的方法,该方法是基于线性玻尔兹曼型方程对具有外力作用的热不可压缩流进行求解的。在经典的格子玻尔兹曼方法中,线性化的玻尔兹曼型方程的解中需要压力-密度关系和/或有限的马赫数,无论多么小,从而不可避免地产生固有的压缩性误差。在本方法中,通过压力校正方法确定压力场以确保不可压缩性,因此该方法对液体和不可压缩气体流均有效。模拟了各种热层流不可压缩流,例如库埃特流,下降的薄膜液流,流经多孔板的流体以及二维和三维自然对流。结果与分析解决方案和所研究的热不可压缩流的其他已知数值模拟进行了很好的比较。

著录项

  • 作者

    Fu SC; So RMC; Leung WWF;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号