首页> 外文OA文献 >Penalized Spline Nonparametric Mixed Models for Inference About a Finite Population Mean from Two-Stage Samples
【2h】

Penalized Spline Nonparametric Mixed Models for Inference About a Finite Population Mean from Two-Stage Samples

机译:从两阶段样本推断有限总体均值的惩罚样条非参数混合模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Samplers often distrust model-based approaches to survey inference due to concerns about model misspecification when applied to large samples from complex populations. We suggest that the model-based paradigm can work very successfully in survey settings, provided models are chosen that take into account the sample design and avoid strong parametric assumptions. The Horvitz-Thompson (HT) estimator is a simple design-unbiased estimator of the finite population total in probability sampling designs. From a modeling perspective, the HT estimator performs well when the ratios of the outcome values and the inclusion probabilities are exchangeable. When this assumption is not met, the HT estimator can be very inefficient. In Zheng and Little (2002a, 2002b) we used penalized splines (p-splines) to model smoothly -varying relationships between the outcome and the inclusion probabilities in one-stage probability proportional to size (PPS) samples. We showed that p-spline model-based estimators are in general more efficient than the HT estimator, and can be used to provide narrower confidence intervals with close to nominal confidence coverage. In this article, we extend this approach to two-stage sampling designs. We use a p-spline based mixed model that fits a nonparametric relationship between the primary sampling unit (PSU) means and a measure of PSU size, and incorporates random effects to model clustering. For variance estimation we consider the empirical Bayes model-based variance, the jackknife and balanced repeated replication. Simulation studies on simulated data and on samples drawn from public use microdata in the 1990 census demonstrate gains for the model-based p-spline estimator over the HT estimator and linear model-assisted estimators. Simulations also show the variance estimation methods yield confidence intervals with satisfactory confidence coverage. Interestingly, these gains can be seen in an equal probability design, where the first stage selection is PPS and the second stage selection probabilities are proportional to the inverse of the first stage inclusion probabilities, and the HT estimator leads to the unweighted mean. In situations that most favor the HT estimator, the model-based estimators have comparable efficiency.
机译:由于将模型应用于来自复杂种群的大样本时,由于担心模型规格不正确,因此抽样人员通常不信任基于模型的调查推理方法。我们建议基于模型的范例在调查环境中可以非常成功地工作,只要选择的模型考虑了样本设计并避免了强有力的参数假设。 Horvitz-Thompson(HT)估计器是概率抽样设计中有限总体总数的简单设计无偏估计器。从建模角度来看,当结果值与包含概率的比率可交换时,HT估计器的性能很好。如果不满足此假设,则HT估算器可能会非常低效。在Zheng和Little(2002a,2002b)中,我们使用惩罚样条(p-splines)平滑地建模了与大小(PPS)样本成比例的一阶段概率中结果与包含概率之间的各种关系。我们表明,基于p样条模型的估计器通常比HT估计器更有效,并且可用于提供更窄的置信区间,接近标称置信范围。在本文中,我们将这种方法扩展到两阶段采样设计。我们使用基于p样条的混合模型,该模型适合主要抽样单位(PSU)均值和PSU大小的度量之间的非参数关系,并将随机效应纳入模型聚类。对于方差估计,我们考虑基于经验贝叶斯模型的方差,折刀和平衡重复复制。在1990年的人口普查中,对模拟数据和从公共用途微观数据中抽取的样本进行的模拟研究表明,与HT估计器和线性模型辅助估计器相比,基于模型的p样条估计器具有更大的优势。仿真还表明,方差估计方法产生的置信区间具有令人满意的置信度覆盖范围。有趣的是,可以在等概率设计中看到这些收益,其中第一阶段选择为PPS,第二阶段选择概率与第一阶段包含概率的倒数成比例,而HT估计量导致未加权均值。在最喜欢HT估计器的情况下,基于模型的估计器具有可比的效率。

著录项

  • 作者

    Zheng Hui; Little Rod;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号