首页> 外文期刊>Journal of statistical computation and simulation >Semiparametric inference for open populations using the Jolly-Seber model: a penalized spline approach
【24h】

Semiparametric inference for open populations using the Jolly-Seber model: a penalized spline approach

机译:使用Jolly-Seber模型的开放种群的半参数推断:惩罚样条法

获取原文
获取原文并翻译 | 示例

摘要

When there are frequent capture occasions, both semiparametric and nonparametric estimators for the size of an open population have been proposed using kernel smoothing methods. While kernel smoothing methods are mathematically tractable, fitting them to data is computationally intensive. Here, we use smoothing splines in the form of P-splines to provide an alternate less computationally intensive method of fitting these models to capture-recapture data from open populations with frequent capture occasions. We fit the model to capture data collected over 64 occasions and model the population size as a function of time, seasonal effects and an environmental covariate. A small simulation study is also conducted to examine the performance of the estimators and their standard errors.
机译:当存在频繁捕获的场合时,已经使用核平滑方法提出了一个开放种群的大小的半参数和非参数估计量。尽管核平滑方法在数学上很容易处理,但将它们拟合到数据却需要大量计算。在这里,我们使用P样条形式的平滑样条,以提供一种替代的,计算量较少的方法来拟合这些模型,以捕获具有频繁捕获机会的开放种群的捕获数据。我们对模型进行拟合以捕获在64个场合收集的数据,并对人口规模作为时间,季节影响和环境协变量的函数进行建模。还进行了一次小型模拟研究,以检验估计量的性能及其标准误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号