首页> 美国政府科技报告 >Generalized Additive Models, Cubic Splines and Penalized Likelihood
【24h】

Generalized Additive Models, Cubic Splines and Penalized Likelihood

机译:广义加法模型,三次样条和惩罚似然

获取原文

摘要

Generalized additive models extended the class of generalized linear models by allowing an arbitrary smooth function for any or all of the covariates. The functions are established by the local scoring procedure, using a smoother as a building block in an iterative algorithm. This paper utilizes a cubic spline smoother in the algorithm and shows how the resultant procedure can be view as a method for automatically smoothing a suitably defined partial residual, and more formally, a method for maximizing a penalized likelihood. The authors also examine convergence of the inner (backfitting) loop in this case and illustrate these ideas with some binary response data. Keywords: Spline; Non-parametric regression.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号