首页> 外国专利> GENERALIZED ADDITIVE MACHINE-LEARNED MODELS FOR COMPUTERIZED PREDICTIONS

GENERALIZED ADDITIVE MACHINE-LEARNED MODELS FOR COMPUTERIZED PREDICTIONS

机译:通用预测的机器学习模型

摘要

In an example, predictions/recommendations using machine learned models are made even more accurate by using three models instead of a single Generalized Linear Mixed (GLMix) model. Specifically, rather than having a single GLMix model with different coefficients for users and items, three separate models are used and then combined. Each of these models has different granularities and dimensions. A global model models the similarity between user attributes (e.g., from the member profile or activity history) and item attributes. A per-user model models user attributes and activity history. A per-item model models item attributes and activity history. Such a model may be termed a Generalized Additive Mixed Effect (GAME) model.
机译:在示例中,通过使用三个模型而不是单个广义线性混合(GLMix)模型,可以使使用机器学习模型的预测/建议更加准确。具体而言,不是使用具有不同系数的用户和商品的单个GLMix模型,而是使用三个单独的模型,然后进行组合。这些模型中的每一个都有不同的粒度和维度。全局模型对用户属性(例如,来自会员资料或活动历史记录)和商品属性之间的相似性进行建模。每个用户模型对用户属性和活动历史进行建模。每个项目模型为项目属性和活动历史记录建模。这样的模型可以被称为广义加性混合效应(GAME)模型。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号