首页> 外文OA文献 >Combining Predictors for Classification Using the Area Under the ROC Curve
【2h】

Combining Predictors for Classification Using the Area Under the ROC Curve

机译:使用ROC曲线下的面积组合预测变量进行分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We compare simple logistic regression with an alternative robust procedure for constructing linear predictors to be used for the two state classification task. Theoritical advantages of the robust procedure over logistic regression are: (i) although it assumes a generalized linear model for the dichotomous outcome variable, it does not require specification of the link function; (ii) it accommodates case-control designs even when the model is not logistic; and (iii) it yields sensible results even when the generalized linear model assumption fails to hold. Surprisingly, we find that the linear predictor derived from the logistic regression likelihood is very robust in the following sense: it yields prediction performance comparable with our theoretically robust procedure when the logistic model fails and even when the form of the linear predictor is incorrectly specified. This raises some intriguing questions about using logistic regression for prediction. Some preliminary explanations are given that draw from recent literature.Next we suggest that it may not be necessary to fit the linear function over the whole predictor space to achieve adequate classification properties. Procedures that restrict modeling to a subspace defined by minimally acceptable false-positive and false-negative error rates are suggested. We find that relaxing linearity assumptions to a subspace infers further robustness and that the logistic likelihood calculated over the restricted region provides a robust objective function for determining classification rules.Overall, our new procedure performs well but not substantially better than logistic regression. Further work is warranted to clarify the relationship between the two conceptually distinct procedures, and may provide a new conceptual basis for using the logistic likelihood to combine predictors.Note: This Working Paper is a revised version of the previously posted u22Robust Binary Regression for Optimally Combining Predictors.u22
机译:我们将简单的逻辑回归与构建线性预测变量以用于两种状态分类任务的替代健壮过程进行比较。鲁棒性过程相对于逻辑回归的理论优势是:(i)尽管它假定了二分结果变量的广义线性模型,但它不需要链接函数的规范; (ii)即使模型不是逻辑模型,它也可以适应案例控制设计; (iii)即使广义线性模型假设不成立,它也会产生合理的结果。出乎意料的是,我们发现从逻辑回归可能性中得出的线性预测变量在以下意义上非常稳健:当逻辑模型失效甚至线性预测变量的形式不正确时,其预测性能与我们的理论鲁棒过程相当。这就提出了一些有关使用逻辑回归进行预测的有趣问题。从最近的文献中给出了一些初步的解释。接下来,我们建议可能不需要在整个预测变量空间上拟合线性函数以实现足够的分类特性。建议使用将建模限制到由最小可接受的假阳性和假阴性错误率定义的子空间的过程。我们发现,放宽对子空间的线性假设可以进一步增强鲁棒性,并且在限制区域上计算的逻辑似然性为确定分类规则提供了鲁棒的目标函数。总体而言,我们的新过程执行得很好,但并不比逻辑回归好得多。有必要做进一步的工作来阐明这两个概念上不同的过程之间的关系,并可能为使用逻辑似然法组合预测变量提供新的概念基础。注:本工作文件是先前发表的《鲁棒二进制回归》的修订版,旨在优化组合预测变量。 u22

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号