首页> 外文OA文献 >Change detection in multi-temporal SAR images using dual-channel convolutional neural network
【2h】

Change detection in multi-temporal SAR images using dual-channel convolutional neural network

机译:使用双通道卷积神经网络的多时相SAR图像变化检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper proposes a model of dual-channel convolutional neural network (CNN) that is designed for change detection in SAR images, in an effort to acquire higher detection accuracy and lower misclassification rate. This network model contains two parallel CNN channels, which can extract deep features from two multitemporal SAR images. For comparison and validation, the proposed method is tested along with other change detection algorithms on both simulated SAR images and real-world SAR images captured by different sensors. The experimental results demonstrate that the presented method outperforms the state-of-the-art techniques by a considerable margin
机译:本文提出了一种用于SAR图像变化检测的双通道卷积神经网络模型,以期获得更高的检测精度和更低的误分类率。该网络模型包含两个并行的CNN通道,可以从两个多时相SAR图像中提取深度特征。为了进行比较和验证,在模拟的SAR图像和由不同传感器捕获的真实SAR图像上,对所提出的方法和其他变化检测算法进行了测试。实验结果表明,所提出的方法在一定程度上优于最新技术

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号