首页> 外文OA文献 >Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds
【2h】

Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds

机译:揭示有机化合物氧化过程中高氧中间体的结构和化学机理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Decades of research on the autooxidation of organic compounds have provided fundamental and practical insights into these processes; however, the structure of many key autooxidation intermediates and the reactions leading to their formation still remain unclear. This work provides additional experimental evidence that highly oxygenated intermediates with one or more hydroperoxy groups are prevalent in the autooxidation of various oxygenated (e.g., alcohol, aldehyde, keto compounds, ether, and ester) and nonoxygenated (e.g., normal alkane, branched alkane, and cycloalkane) organic compounds. These findings improve our understanding of autooxidation reaction mechanisms that are routinely used to predict fuel ignition and oxidative stability of liquid hydrocarbons, while also providing insights relevant to the formation mechanisms of tropospheric aerosol building blocks. The direct observation of highly oxygenated intermediates for the autooxidation of alkanes at 500–600 K builds upon prior observations made in atmospheric conditions for the autooxidation of terpenes and other unsaturated hydrocarbons; it shows that highly oxygenated intermediates are stable at conditions above room temperature. These results further reveal that highly oxygenated intermediates are not only accessible by chemical activation but also by thermal activation. Theoretical calculations on H-atom migration reactions are presented to rationalize the relationship between the organic compound’s molecular structure (n-alkane, branched alkane, and cycloalkane) and its propensity to produce highly oxygenated intermediates via extensive autooxidation of hydroperoxyalkylperoxy radicals. Finally, detailed chemical kinetic simulations demonstrate the influence of these additional reaction pathways on the ignition of practical fuels.
机译:关于有机化合物自氧化的数十年研究为这些过程提供了基础和实际的见识。然而,许多关键的自氧化中间体的结构以及导致它们形成的反应仍然不清楚。这项工作提供了另外的实验证据,即带有一个或多个氢过氧基团的高度氧化的中间体普遍存在于各种氧化的(例如,醇,醛,酮化合物,醚和酯)和非氧化的(例如,正构烷烃,支链烷烃,和环烷烃)有机化合物。这些发现提高了我们对通常用于预测燃料点燃和液态烃氧化稳定性的自氧化反应机理的理解,同时还提供了与对流层气溶胶构建块形成机理有关的见解。在大气条件下对萜烯和其他不饱和烃类自动氧化的直接观察结果,可以直接观察到高度氧化的中间体在500-600 K时对烷烃的自动氧化;它表明高度氧化的中间体在高于室温的条件下是稳定的。这些结果进一步表明,高度氧化的中间体不仅可通过化学活化获得,而且可通过热活化获得。提出了有关H原子迁移反应的理论计算,以理顺有机化合物的分子结构(正构烷烃,支链烷烃和环烷烃)与其通过氢过氧化烷基过氧自由基的广泛自氧化反应生成高氧化中间体的倾向之间的关系。最后,详细的化学动力学模拟证明了这些附加反应路径对实际燃料着火的影响。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号