首页> 外文OA文献 >Investigating the Influence of Mesoporosity in Zeolite Beta on its Catalytic Performance for the Conversion of Methanol to Hydrocarbons
【2h】

Investigating the Influence of Mesoporosity in Zeolite Beta on its Catalytic Performance for the Conversion of Methanol to Hydrocarbons

机译:研究介孔率在沸石β中对其催化甲醇转化为碳氢化合物的性能的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hierarchically porous zeolite Beta (Beta-MS) synthesized by a soft-templating method contains remarkable intra-crystalline mesoporosity, which reduces the diffusion length in zeolite channels down to several nanometers and alters the distribution of Al among distinct crystallographic sites. When used as a catalyst for the conversion of methanol to hydrocarbons (MTH) at 330 oC, Beta-MS exhibited a 2.7-fold larger conversion capacity, a 2.0-fold faster reaction rate, and a remarkably longer lifetime than conventional zeolite Beta (Beta-C). The superior catalytic performance of Beta-MS is attributed to its hierarchical structure, which offers full accessibility to all catalytic active sites. In contrast, Beta-C was easily deactivated because a layer of coke quickly deposited on the outer surfaces of the catalyst crystals, impeding access to interior active sites. This difference is clearly demonstrated by using electron microscopy combined with electron energy loss spectroscopy to probe the distribution of coke in the deactivated catalysts. At both low and high conversions, ranging from 20% to 100%, Beta-MS gave higher selectivity towards higher aliphatics (C4-C7) but lower ethene selectivity compared to Beta-C. Therefore, we conclude that a hierarchical structure decreases the residence time of methylbenzenes in zeolite micropores, disfavoring the propagation of the aromatic-based catalytic cycle. This conclusion is consistent with a recent report on ZSM-5 and is also strongly supported by our analysis of soluble coke species residing in the catalysts. Moreover, we identified an oxygen-containing compound, 4-methyl-benzaldehyde, in the coke, which has not been observed in the MTH reaction before.
机译:通过软模板法合成的多层多孔Beta(Beta-MS)具有显着的晶内介孔性,从而将沸石通道中的扩散长度减小至几纳米,并改变了Al在不同晶体学位点之间的分布。当用作330 oC下甲醇转化为碳氢化合物(MTH)的催化剂时,Beta-MS的转化容量比常规沸石Beta(Beta)高2.7倍,反应速率快2.0倍,并且使用寿命明显更长-C)。 Beta-MS的出色催化性能归因于其分层结构,它提供了对所有催化活性位点的完全可及性。相反,Beta-C容易失活,因为一层焦炭迅速沉积在催化剂晶体的外表面上,阻碍了内部活性位的进入。通过使用电子显微镜结合电子能量损失光谱法来探究焦炭在失活催化剂中的分布,可以清楚地证明这种差异。在低转化率和高转化率(范围从20%到100%)下,与Beta-C相比,Beta-MS对较高的脂肪族化合物(C4-C7)的选择性更高,但对乙烯的选择性更低。因此,我们得出的结论是,分层结构可减少甲基苯在沸石微孔中的停留时间,从而不利于芳烃基催化循环的传播。该结论与关于ZSM-5的最新报告是一致的,也得到了我们对催化剂中残留的可溶性焦炭种类的分析的有力支持。此外,我们在焦炭中鉴定出了一种含氧化合物4-甲基苯甲醛,这在以前的MTH反应中还没有观察到。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号