首页> 外文OA文献 >On the Efficient Simulation of the Left-Tail of the Sum of Correlated Log-normal Variates
【2h】

On the Efficient Simulation of the Left-Tail of the Sum of Correlated Log-normal Variates

机译:对数正态变量和的左尾的有效仿真

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The sum of Log-normal variates is encountered in many challenging applications such as in performance analysis of wireless communication systems and in financial engineering. Several approximation methods have been developed in the literature, the accuracy of which is not ensured in the tail regions. These regions are of primordial interest wherein small probability values have to be evaluated with high precision. Variance reduction techniques are known to yield accurate, yet efficient, estimates of small probability values. Most of the existing approaches, however, have considered the problem of estimating the right-tail of the sum of Log-normal random variables (RVS). In the present work, we consider instead the estimation of the left-tail of the sum of correlated Log-normal variates with Gaussian copula under a mild assumption on the covariance matrix. We propose an estimator combining an existing mean-shifting importance sampling approach with a control variate technique. The main result is that the proposed estimator has an asymptotically vanishing relative error which represents a major finding in the context of the left-tail simulation of the sum of Log-normal RVs. Finally, we assess by various simulation results the performances of the proposed estimator compared to existing estimators.
机译:在许多具有挑战性的应用中,例如在无线通信系统的性能分析和金融工程中,都会遇到对数正态变量的总和。文献中已经开发了几种近似方法,在尾部区域不能保证其准确性。这些区域具有原始意义,其中小概率值必须高精度地评估。众所周知,方差降低技术可以产生准确而有效的小概率值估计。然而,大多数现有方法已经考虑了估计对数正态随机变量(RVS)之和的右尾的问题。在当前工作中,我们考虑在协方差矩阵的一个温和假设下,估计与高斯copula相关的对数正态变量的和的左尾估计。我们提出了一种将现有的均值漂移重要性抽样方法与控制变量技术相结合的估计器。主要结果是,所提出的估计量具有渐近消失的相对误差,这代表了在对数正态RV的总和的左尾模拟中的主要发现。最后,我们通过各种仿真结果评估了与现有估算器相比拟议的估算器的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号