首页> 外文OA文献 >Linear versus Nonlinear Filtering with Scale-Selective Corrections for Balanced Dynamics in a Simple Atmospheric Model
【2h】

Linear versus Nonlinear Filtering with Scale-Selective Corrections for Balanced Dynamics in a Simple Atmospheric Model

机译:在简单的大气模型中使用线性与非线性滤波和比例选择校正来实现平衡动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper investigates the role of the linear analysis step of the ensemble Kalman filters (EnKF) in disrupting the balanced dynamics in a simple atmospheric model and compares it to a fully nonlinear particle-based filter (PF). The filters have a very similar forecast step but the analysis step of the PF solves the full Bayesian filtering problem while the EnKF analysis only applies to Gaussian distributions. The EnKF is compared to two flavors of the particle filter with different sampling strategies, the sequential importance resampling filter (SIRF) and the sequential kernel resampling filter (SKRF). The model admits a chaotic vortical mode coupled to a comparatively fast gravity wave mode. It can also be configured either to evolve on a so-called slow manifold, where the fast motion is suppressed, or such that the fast-varying variables are diagnosed from the slow-varying variables as slaved modes. Identical twin experiments show that EnKF and PF capture the variables on the slow manifold well as the dynamics is very stable. PFs, especially the SKRF, capture slaved modes better than the EnKF, implying that a full Bayesian analysis estimates the nonlinear model variables better. The PFs perform significantly better in the fully coupled nonlinear model where fast and slow variables modulate each other. This suggests that the analysis step in the PFs maintains the balance in both variables much better than the EnKF. It is also shown that increasing the ensemble size generally improves the performance of the PFs but has less impact on the EnKF after a sufficient number of members have been used.
机译:本文研究了集成卡尔曼滤波器(EnKF)的线性分析步骤在破坏简单大气模型中的平衡动力学中的作用,并将其与完全非线性的基于粒子的滤波器(PF)进行了比较。滤波器的预测步骤非常相似,但是PF的分析步骤解决了完整的贝叶斯滤波问题,而EnKF分析仅适用于高斯分布。将EnKF与具有不同采样策略的两种粒子过滤器进行比较,依次是重要性重采样滤波器(SIRF)和顺序内核重采样滤波器(SKRF)。该模型允许耦合到相对较快的重力波模式的混沌涡旋模式。也可以将其配置为在所谓的慢速歧管上演化,从而抑制快速运动,或者根据慢速变量将慢速变量诊断为从动模式。相同的孪生实验表明,EnKF和PF可以捕获慢速歧管上的变量,并且动力学非常稳定。 PF(尤其是SKRF)比EnKF更好地捕获从模式,这意味着完整的贝叶斯分析可以更好地估计非线性模型变量。在快速和慢速变量相互调制的完全耦合非线性模型中,PF的性能明显更好。这表明,PFs中的分析步骤比EnKF更好地保持了两个变量之间的平衡。还显示出增加合奏大小通常可以提高PF的性能,但在使用足够数量的成员后,对EnKF的影响较小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号