首页> 外文OA文献 >Non-Planar Nanotube and Wavy Architecture Based Ultra-High Performance Field Effect Transistors
【2h】

Non-Planar Nanotube and Wavy Architecture Based Ultra-High Performance Field Effect Transistors

机译:基于非平面纳米管和波浪结构的超高性能场效应晶体管

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This dissertation presents a unique concept for a device architecture named the nanotube (NT) architecture, which is capable of higher drive current compared to the Gate-All-Around Nanowire architecture when applied to heterostructure Tunnel Field Effect Transistors. Through the use of inner/outer core-shell gates, heterostructure NT TFET leverages physically larger tunneling area thus achieving higher driver current (ION) and saving real estates by eliminating arraying requirement. We discuss the physics of p-type (Silicon/Indium Arsenide) and n-type (Silicon/Germanium hetero-structure) based TFETs. Numerical TCAD simulations have shown that NT TFETs have 5x and 1.6 x higher normalized ION when compared to GAA NW TFET for p and n-type TFETs, respectively. This is due to the availability of larger tunneling junction cross sectional area, and lower Shockley-Reed-Hall recombination, while achieving sub 60 mV/dec performance for moreudthan 5 orders of magnitude of drain current, thus enabling scaling down of Vdd to 0.5 V. udThis dissertation also introduces a novel thin-film-transistors architecture that is named the Wavy Channel (WC) architecture, which allows for extending device width by integrating vertical fin-like substrate corrugations giving rise to up to 50% larger device width, without occupying extra chip area. The novel architecture shows 2x higher output drive current per unit chip area when compared to conventional planar architecture. The current increase is attributed to both the extra device width and 50% enhancement inudfield effect mobility due to electrostatic gating effects. Digital circuits are fabricated to demonstrate the potential of integrating WC TFT based circuits. WC inverters have shown 2× the peak-to-peak output voltage for the same input, and ~2× the operation frequency of the planar inverters for the same peak-to-peak output voltage. WC NAND circuits have shown 2× higher peak-to-peak output voltage, and 3× lower high-to-low propagation delay times when compared to their planar counterparts. WC NOR circuits have shown 70% higher peak-to-peak output voltage, over their planar counterparts. Finally, a WC based pass transistor logic multiplexer circuit is demonstrated, which has shown more than 5× faster high-to-low propagation delay compared to its planar counterpart at a similar peak-to-peak output voltage.
机译:本文提出了一种称为纳米管(NT)结构的器件体系结构的独特概念,当应用于异质结构隧道场效应晶体管时,与栅全能纳米线体系结构相比,该器件能够提供更高的驱动电流。通过使用内部/外部核壳栅极,异质结构NT TFET可以利用物理上更大的隧道面积,从而实现更高的驱动器电流(ION),并通过消除阵列要求来节省空间。我们讨论基于p型(硅/砷化铟)和n型(硅/锗异质结构)的TFET的物理原理。 TCAD数值模拟表明,与GAA NW TFET分别用于p型和n型TFET相比,NT TFET的归一化离子高5倍和1.6倍。这是由于具有更大的隧道结横截面面积和更低的Shockley-Reed-Hall重组,同时对于低于5个数量级的漏极电流可实现低于60 mV / dec的性能,从而能够将Vdd缩小至0.5 V.ud本论文还介绍了一种新颖的薄膜晶体管架构,称为波浪通道(WC)架构,该架构可以通过集成垂直鳍状衬底波纹来扩展器件宽度,从而使器件的尺寸增加多达50%。宽度,而不会占用额外的芯片面积。与传统的平面架构相比,这种新颖的架构显示出每单位芯片面积高出2倍的输出驱动电流。电流的增加既归因于额外的器件宽度,又归因于静电门控效应,场场迁移率提高了50%。制造数字电路来演示集成基于WC TFT的电路的潜力。对于相同的输入,WC逆变器的峰峰值输出电压为2倍,对于相同的峰峰值输出电压,平面逆变器的工作频率约为2倍。与平面NAND电路相比,WC NAND电路的峰峰值输出电压高2倍,高到低传播延迟时间低3倍。 WC NOR电路的峰峰值输出电压比其平面同类产品高70%。最后,展示了一个基于WC的传输晶体管逻辑多路复用器电路,在相似的峰峰值输出电压下,与平面同类晶体管相比,它的高至低传播延迟快了5倍以上。

著录项

  • 作者

    Hanna Amir;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号