首页> 外文OA文献 >Réduction a la volée du volume des traces d' exécution pour l'analyse d'applications multimédia de systemes embarqués
【2h】

Réduction a la volée du volume des traces d' exécution pour l'analyse d'applications multimédia de systemes embarqués

机译:动态减少执行跟踪量,以分析嵌入式系统的多媒体应用程序

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The consumer electronics market is dominated by embedded systems due to their ever-increasing processingpower and the large number of functionnalities they offer. To provide such features, architectures of embedded systems have increased in complexity : they rely on several heterogeneous processing units, and allowconcurrent tasks execution. This complexity degrades the programmability of embedded system architectures and makes application execution difficult to understand on such systems. The most used approachfor analyzing application execution on embedded systems consists in capturing execution traces (event sequences, such as system call invocations or context switch, generated during application execution). This approach is used in application testing, debugging or profiling. However in some use cases, execution traces generated can be very large, up to several hundreds of gigabytes. For example endurance tests, which are tests consisting in tracing execution of an application on an embedded system during long periods, from several hours to several days. Current tools and methods for analyzing execution traces are not designed to handle such amounts of data.We propose an approach for monitoring an application execution by analyzing traces on the fly in order toreduce the volume of recorded trace. Our approach is based on features of multimedia applications whichcontribute the most to the success of popular devices such as set-top boxes or smartphones. This approachconsists in identifying automatically the suspicious periods of an application execution in order to recordonly the parts of traces which correspond to these periods. The proposed approach consists of two steps : a learning step which discovers regular behaviors of an application from its execution trace, and an anomalydetection step which identifies behaviors deviating from the regular ones.The many experiments, performed on synthetic and real-life datasets, show that our approach reduces thetrace size by an order of magnitude while maintaining a good performance in detecting suspicious behaviors.
机译:嵌入式系统由于其不断提高的处理能力和提供的大量功能而在消费电子市场中占据主导地位。为了提供这样的功能,嵌入式系统的体系结构增加了复杂性:它们依赖于几个异构处理单元,并允许并发任务执行。这种复杂性降低了嵌入式系统体系结构的可编程性,并使应用程序执行在此类系统上难以理解。用于分析嵌入式系统上的应用程序执行的最常用方法是捕获执行跟踪(在应用程序执行期间生成的事件序列,例如系统调用调用或上下文切换)。此方法用于应用程序测试,调试或性能分析。但是,在某些用例中,生成的执行跟踪可能非常大,高达数百GB。例如,耐久性测试是指在几小时到几天的长时间内跟踪嵌入式系统上应用程序的执行情况的测试。当前的用于分析执行跟踪的工具和方法并非旨在处理此类数据量。我们提出了一种通过动态分析跟踪来监视应用程序执行的方法,以减少记录的跟踪量。我们的方法基于多媒体应用程序的功能,这些功能对机顶盒或智能手机等流行设备的成功做出了最大贡献。此方法包括自动识别应用程序执行的可疑时期,以便仅记录与这些时期相对应的跟踪部分。提议的方法包括两个步骤:一个学习步骤,该步骤从应用程序的执行轨迹中发现其正常行为;一个异常检测步骤,用于识别与常规行为不同的行为。对合成和真实数据集进行的许多实验表明我们的方法将迹线大小减小了一个数量级,同时在检测可疑行为方面保持了良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号