This thesis is concerned with the study of two problems : On the one hand, we consider a parabolic-elliptic system of Patlak-Keller-Segeltype with a critical power type sensitivity. We study the radially symmetric solutions of this system on a ball of the euclidean space and obtain wellposedness and regularity results together with a blow-up alternative. As for the long time qualitative behaviour of the radial solutions, for any space dimension greater or equal to three, we show that a critical mass phenomenon occurs, which generalizes the wellknown case of dimension two but, with respect to the latter, with a very different qualitative behaviour in the case of the critical mass. When the mass is subcritical, we moreover show that the cell density converges uniformly with exponential speed toward the unique steady state. This result is valid for any space dimension greater or equal to two, which was, to our knowledge, not known even for the most studied case of dimension two. On the other hand, we study noncooperative (semilinear and fully nonlinear) elliptic systems. In the case of the whole space or of a half-space (or even for a cone), under a natural structure condition on the nonlinearities, we give sufficient conditions to have proportionnality of the components, which allows to reduce the system to a scalar equation and then to get classification and Liouville type results. In the case of a bounded domain, thanks to the obtained Liouville type theorems, the blow-up method of Gidas and Spruck then allows to get an a priori estimate on the bounded solutions and eventually to deduce the existence of a non trivial solution by a topological method using the degree theory.
展开▼