首页> 外文OA文献 >Novel multi-band quantum soliton states for a derivative nonlinear Schrodinger model
【2h】

Novel multi-band quantum soliton states for a derivative nonlinear Schrodinger model

机译:非线性非线性薛定inger模型的新型多带量子孤子态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We show that localized N-body soliton states exist for a quantum integrable derivative nonlinear Schrodinger model for several non-overlapping ranges(called bands) of the coupling constant eta. The number of such distinct bandsis given by Euler's phi-function which appears in the context of number theory. The ranges of eta within each band can also be determined completely using concepts from number theory such as Farey sequences and continued fractions. We observe that N-body soliton states appearing within each band can have both positive and negative momentum. Moreover, for all bands lying in the region eta > 0, soliton states with positive momentum have positive binding energy (called bound states), while the states with negative momentum have negative binding energy (anti-bound states).
机译:我们证明了对于耦合常数 eta的几个非重叠范​​围(称为带)的量子可积分导数非线性Schrodinger模型,存在局部N体孤子状态。欧拉 phi函数给出的这种明显的带子数出现在数论中。每个带内 eta的范围也可以使用数论的概念(例如Farey序列和连续分数)完全确定。我们观察到,出现在每个谱带中的N体孤子状态可以同时具有正和负动量。此外,对于位于 eta> 0区域中的所有谱带,具有正动量的孤子态具有正结合能(称为束缚态),而具有负动量的孤子态具有负结合能(反束缚态)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号