首页>
外文OA文献
>Accelerating Exact k-means Algorithms with Geometric Reasoning
【2h】
Accelerating Exact k-means Algorithms with Geometric Reasoning
展开▼
机译:利用几何推理加速精确的k均值算法
展开▼
免费
页面导航
摘要
著录项
引文网络
相似文献
相关主题
摘要
We present new algorithms for the k-means clustering problem. They use the kd-tree data structure to reduce the large number of nearest-neighbor queries issued by the traditional algorithm. Sufficient statistics are stored in the nodes of the kd-tree. Then, an analysis of the geometry of the current cluster centers results in great reduction of the work needed to update the centers. Our algorithms behave exactly as the traditional k-means algorithm. Proofs of correctness are included. The kd-tree can also be used to initialize the k-means starting centers efficiently. Our algorithms can be easily extended to provide fast ways of computing the error of a given cluster assignment, regardless of the method in which those clusters were obtained. We also show how to use them in a setting which allows approximate clustering results, with the benefit of running faster. We have implemented and tested our algorithms on both real and simulated data. Results show a speedup factor of up to 170 on real astrophysical data, and superiority over the naive algorithm on simulated data in up to 5 dimensions. Our algorithms scale well with respect to the number of points and number of centers, allowing for clustering with tens of thousands of centers.
展开▼