首页> 美国政府科技报告 >Accelerating Exact k-means Algorithms with Geometric Reasoning
【24h】

Accelerating Exact k-means Algorithms with Geometric Reasoning

机译:用几何推理加速精确k-means算法

获取原文

摘要

We present new algorithms for the k-means clustering problem. They use the kd-tree data structure to reduce the large number of nearest-neighbor queries issued by the traditional algorithm. Sufficient statistics are stored in the nodes of the kd-tree. Then an analysis of the geometry of the current cluster centers results in great reduction of the work needed to update the centers. Our algorithms behave exactly as the traditional k-means algorithm. Proofs of correctness are included. The kd-tree can also be used to initialize the k-means starting centers efficiently. Our algorithms can be easily extended to provide fast ways of computing the error of a given cluster assignment regardless of the method in which those clusters were obtained. We also show how to use them in a setting which allows approximate clustering results, with the benefit of running faster. We have implemented and tested our algorithms on both real and simulated data. Results show a speedup factor of up to 170 on real astrophysical data, and superiority over the naive algorithm on simulated data in up to 5 dimensions. Our algorithms scale well with respect to the number of points and number of centers allowing for clustering with tens of thousands of centers.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号