首页> 外文OA文献 >Efficient Recovery of Low-Dimensional Structure From High-Dimensional Data
【2h】

Efficient Recovery of Low-Dimensional Structure From High-Dimensional Data

机译:从高维数据有效恢复低维结构

摘要

Many modeling tasks in computer vision, e.g. structure from motion, shape/reflectance from shading, filter synthesis have a low-dimensional intrinsic structure even though the dimension of the input data can be relatively large. We propose a simple but surprisingly effective iterative randomized algorithm that drastically cuts down the time required for recovering the intrinsic structure. The computational cost depends only on the intrinsic dimension of the structure of the task. It is based on the recently proposed Cascade Basis Reduction (CBR) algorithm that was developed in the context of steerable filters. A key feature of our algorithm compared with CBR is that an arbitrary a priori basis for the task is not required. This allows us to extend the applicability of the algorithm to tasks beyond steerable filters such as structure from motion. We prove the convergence for the new algorithm. In practice the new algorithm is much faster than CBR for the same modeling error. We demonstrate this speed-up for the construction of a steerable basis for Gabor filters. We also demonstrate the generality of the new algorithm by applying it to to an example from structure from motion without missing data
机译:计算机视觉中的许多建模任务,例如尽管输入数据的尺寸可能相对较大,但运动产生的结构,阴影产生的形状/反射率,滤镜合成具有低维固有结构。我们提出了一种简单但出人意料的有效迭代随机算法,该算法大大减少了恢复固有结构所需的时间。计算成本仅取决于任务结构的内在维度。它基于最近提出的级联基础减少(CBR)算法,该算法是在可控滤波器的背景下开发的。与CBR相比,我们算法的一个关键特征是不需要为该任务提供任意先验基础。这使我们能够将算法的适用性扩展到可操纵的过滤器之外的任务,例如运动结构。我们证明了新算法的收敛性。实际上,对于相同的建模误差,新算法比CBR快得多。我们证明了这种加快速度,为构建Gabor滤波器提供了可操纵的基础。我们还通过将新算法应用于运动结构中的示例而不会丢失数据的方法来证明新算法的一般性

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号