首页> 外文期刊>IEEE transactions on visualization and computer graphics >LDSScanner: Exploratory Analysis of Low-Dimensional Structures in High-Dimensional Datasets
【24h】

LDSScanner: Exploratory Analysis of Low-Dimensional Structures in High-Dimensional Datasets

机译:LDSScanner:高维数据集中的低维结构的探索性分析

获取原文
获取原文并翻译 | 示例

摘要

Many approaches for analyzing a high-dimensional dataset assume that the dataset contains specific structures, e.g., clusters in linear subspaces or non-linear manifolds. This yields a trial-and-error process to verify the appropriate model and parameters. This paper contributes an exploratory interface that supports visual identification of low-dimensional structures in a high-dimensional dataset, and facilitates the optimized selection of data models and configurations. Our key idea is to abstract a set of global and local feature descriptors from the neighborhood graph-based representation of the latent low-dimensional structure, such as pairwise geodesic distance (GD) among points and pairwise local tangent space divergence (LTSD) among pointwise local tangent spaces (LTS). We propose a new LTSD-GD view, which is constructed by mapping LTSD and GD to the $x$ axis and $y$ axis using 1D multidimensional scaling, respectively. Unlike traditional dimensionality reduction methods that preserve various kinds of distances among points, the LTSD-GD view presents the distribution of pointwise LTS ($x$ axis) and the variation of LTS in structures (the combination of $x$ axis and $y$ axis). We design and implement a suite of visual tools for navigating and reasoning about intrinsic structures of a high-dimensional dataset. Three case studies verify the effectiveness of our approach.
机译:用于分析高维数据集的许多方法都假定该数据集包含特定的结构,例如,线性子空间或非线性流形中的聚类。这产生了反复试验的过程,以验证适当的模型和参数。本文提供了一个探索性界面,该界面支持视觉识别高维数据集中的低维结构,并有助于优化数据模型和配置的选择。我们的主要思想是从潜在的低维结构的基于邻域图的表示中抽象出一组全局和局部特征描述符,例如点之间的成对测地距离(GD)和点向之间的成对局部切线空间散度(LTSD)局部切线空间(LTS)。我们提出了一个新的LTSD-GD视图,该视图是通过将LTSD和GD映射到 $ x $ 轴和 $ y $ 轴使用一维多维缩放, 分别。与保留点之间各种距离的传统降维方法不同,LTSD-GD视图呈现逐点LTS的分布( $ x $ 轴)和结构中LTS的变化(组合inline-formula> $ x $ 轴和 $ y $ 轴)。我们设计和实现了一套视觉工具,用于导航和推理高维数据集的内在结构。三个案例研究证明了我们方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号