首页> 外文期刊>IEEE Transactions on Signal Processing >Missing Data Recovery for High-Dimensional Signals With Nonlinear Low-Dimensional Structures
【24h】

Missing Data Recovery for High-Dimensional Signals With Nonlinear Low-Dimensional Structures

机译:非线性低维结构的高维信号丢失数据恢复

获取原文
获取原文并翻译 | 示例

摘要

Motivated by missing data recovery in power system monitoring, we study the problem of recovering missing entries of high-dimensional signals that exhibit low-dimensional nonlinear structures. We propose a novel model, termed as “union and sums of subspaces,” to characterize practical nonlinear datasets. In this model, each data point belongs to either one of a few low-dimensional subspaces or the sum of a subset of subspaces. We propose convex-optimization-based methods to recover missing entries under this model. We theoretically analyze the recovery guarantee of our proposed methods with both noiseless and noisy measurements. Numerical experiments on synthetic data and simulated power system data are conducted to verify the effectiveness of the proposed methods.
机译:受电力系统监控中丢失数据恢复的推动,我们研究了恢复显示低维非线性结构的高维信号丢失条目的问题。我们提出了一种新颖的模型,称为“子空间的联合和”,以表征实用的非线性数据集。在此模型中,每个数据点都属于几个低维子空间之一,或者属于子空间子集的总和。我们提出了基于凸优化的方法来恢复此模型下的丢失条目。我们从理论上分析了所提出方法的无噪声和噪声测量的恢复保证。对合成数据和仿真电力系统数据进行了数值实验,以验证所提方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号