首页> 外文OA文献 >A Computational Strategy for Design and Implementation of Equipment That Addresses Sustainable Agricultural Residue Removal at the Subfield Scale
【2h】

A Computational Strategy for Design and Implementation of Equipment That Addresses Sustainable Agricultural Residue Removal at the Subfield Scale

机译:一种设备设计和实现的计算策略,可解决子领域规模上的可持续农业残留物清除

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Agricultural residues are the largest potential near term source of biomass for bioenergy production. Sustainable use of agricultural residues for bioenergy production requires consideration of the important role that residues play in maintaining soil health and productivity. Innovation equipment designs for residue harvesting systems can help economically collect agricultural residues while mitigating sustainability concerns. A key challenge in developing these equipment designs is establishing sustainable reside removal rates at the sub-field scale. Several previous analysis studies have developed methodologies and tools to estimate sustainable agricultural residue removal by considering environmental constraints including soil loss from wind and water erosion and soil organic carbon at field scale or larger but have not considered variation at the sub-field scale. This paper introduces a computational strategy to integrate data and models from multiple spatial scales to investigate how variability of soil, grade, and yield within an individual cornfield can impact sustainable residue removal for bioenergy production. This strategy includes the current modeling tools (i.e., RUSLE2, WEPS, and SCI), the existing data sources (i.e., SSURGO soils, CLIGEN, WINDGEN, and NRCS managements), and the available high fidelity spatial information (i.e., LiDAR slope and crop yield monitor output). Rather than using average or representative values for crop yields, soil characteristics, and slope for a field, county, or larger area, the modeling inputs are based on the same spatial scale as the precision farming data available. There are three challenges for developing an integrated model for sub-field variability of sustainable agricultural residue removal—the computational challenge of iteratively computing with 400 or more spatial points per hectare, the inclusion of geoprocessing tools, and the integration of data from different spatial scales. Using a representative field in Iowa, this paper demonstrates the computational algorithms used and establishes key design parameters for an innovative residue removal equipment design concept.
机译:农业残留物是用于生物能源生产的最大的潜在近期生物质来源。可持续利用农业残留物进行生物能源生产需要考虑残留物在维持土壤健康和生产力方面的重要作用。用于残留物收集系统的创新设备设计可以帮助经济地收集农业残留物,同时减轻对可持续性的关注。开发这些设备设计的一个关键挑战是在子领域规模上建立可持续的居住去除率。先前的一些分析研究已经开发出了方法和工具,通过考虑环境因素(包括风和水蚀造成的土壤流失以及田间规模或更大范围内的土壤有机碳)来估计可持续的农业残留去除,但并未考虑子田规模的变化。本文介绍了一种计算策略,可整合来自多个空间尺度的数据和模型,以研究单个玉米田中土壤,等级和产量的变化如何影响可持续的生物能源生产残留物去除。该策略包括当前的建模工具(即RUSLE2,WEPS和SCI),现有的数据源(即SSURGO土,CLIGEN,WINDGEN和NRCS管理)以及可用的高保真度空间信息(即LiDAR坡度和作物产量监控器输出)。建模输入不是使用田地,县或更大区域的农作物产量,土壤特性和坡度的平均值或代表值,而是基于与可用的精确耕种数据相同的空间比例。开发用于可持续农业残余物去除的子域变异性的集成模型面临三个挑战:每公顷具有400个或更多空间点的迭代计算的计算挑战,包含地理处理工具以及来自不同空间尺度的数据的集成。本文使用爱荷华州的一个代表性领域,演示了所使用的计算算法,并建立了创新的残留物去除设备设计概念的关键设计参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号