首页> 外文OA文献 >Continuous Production of Biodiesel with Supercritical Methanol: a Simple Compressible Flow Model for Tubular Reactors
【2h】

Continuous Production of Biodiesel with Supercritical Methanol: a Simple Compressible Flow Model for Tubular Reactors

机译:超临界甲醇连续生产生物柴油:管状反应器的简单可压缩流模型

摘要

From an industrial point of view, the continuous process for biodiesel production with supercritical methanol (SCM) is more appropriate than the batch process. However, lab-scale studies on the continuous process have shown that the maximum conversion always remains slightly lower than that obtained in the batch process. This work proposes a simple compressible flow model to predict the conversion of methanol and oils into methyl esters (ME) along the length of a tubular reactor and further demonstrates the effect of the development of the compressibility factor of the reaction mixture upon the conversion efficiency to ME. The governing equation was derived from a general molar balance in the tubular reactor using transesterification kinetics of refined-bleached-deodorized (RBD) palm oil in SCM coupled with a suitable thermodynamic model with adjusted binary interaction parameters. Vapor-liquid equilibrium data for triolein + methanol, methyl oleate + methanol and glycerol + methanol mixtures were obtained from the literature and then refitted with the thermodynamic model consisting of the Peng-Robinson equation of state and MHV2 mixing rules to find the set of adequate interaction parameters. In order to check the validity of the proposed model, the predicted ME contents were compared with observed values in a lab-scale continuous reactor at various operating temperatures, pressures and methanol to oil molar ratios. The proposed model proved to be adequate for predicting the final conversion to ME for operating temperatures below 320°C, when the thermal degradation reactions of unsaturated fatty acids did not interfere. Our results also illustrate the importance of taking into account the development of the compressibility factor with time and reactor length, since this was shown to be the cause of the lower transesterification reaction rate in the tubular SCM process. The findings in this work could be employed as a knowledge base to further develop a better model for continuous production of biodiesel with SCM in a tubular reactor.
机译:从工业角度来看,用超临界甲醇(SCM)进行生物柴油生产的连续过程比分批过程更合适。然而,对连续过程的实验室规模研究表明,最大转化率始终保持略低于分批过程中获得的最大转化率。这项工作提出了一个简单的可压缩流动模型,以预测沿着管式反应器的长度方向上甲醇和油类向甲基酯(ME)的转化,并进一步证明了反应混合物可压缩性因子的发展对转化率的影响。我。该控制方程式是通过使用SCM中的精制漂白除臭(RBD)棕榈油的酯交换动力学,以及经过调整的二元相互作用参数的合适热力学模型,从管式反应器中的总体摩尔平衡得出的。从文献中获得了三油精+甲醇,油酸甲酯+甲醇和甘油+甲醇混合物的气液平衡数据,然后将其重新拟合为由彭-鲁宾逊状态方程和MHV2混合规则组成的热力学模型,以找到适当的集合互动参数。为了检验所提出模型的有效性,将预测的ME含量与在实验室规模的连续反应器中在各种工作温度,压力和甲醇与油的摩尔比下的观察值进行了比较。当不饱和脂肪酸的热降解反应不会受到干扰时,建议的模型被证明足以预测在低于320°C的工作温度下最终转化为ME的可能性。我们的结果也说明了考虑到可压缩系数随时间和反应器长度的变化的重要性,因为这表明是管状SCM工艺中较低的酯交换反应速率的原因。这项工作中的发现可以用作知识库,以进一步开发更好的模型,用于在管式反应器中连续生产带有SCM的生物柴油。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号