首页> 外文OA文献 >Adaptive output feedback control based on neural networks: application to flexible aircraft control
【2h】

Adaptive output feedback control based on neural networks: application to flexible aircraft control

机译:基于神经网络的自适应输出反馈控制:在飞机柔性控制中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the major challenges in aeronautical flexible structures control is the uncertain for the non stationary feature of the systems. Transport aircrafts are of unceasingly growing size but are made from increasingly light materials so that their motion dynamics present someudflexible low frequency modes coupled to rigid modes. For reasons that range from fuel transfer to random flying conditions, the parameters of these planes may be subject to significative variations during a flight. A single control law that would be robust to so large levels of uncertainties is likely to be limited in performance. For that reason, we follow in this work an adaptive control approach. Given an existing closed-loop system where a basic controller controls the rigid body modes, the problem of interest consists in designing an adaptive controller that could deal with the flexible modes of the system in such a way that the performance of the first controller is not deteriorated even in the presence of parameter variations. To this purpose, we follow a similar strategy as in Hovakimyan (2002) where a reference model adaptive control method has been proposed. The basic model of the rigid modes is regarded as a reference model and a neural network based learning algorithm is used to compensate online for the effects of unmodelled dynamics and parameter variations. We then successfully apply this control policy to the control of an Airbus aircraft. This is a very high dimensional dynamical model (about 200 states) whose direct control is obviously hard. However, by applying the aforementioned adaptive control technique to it, some promising simulation results can be achieved.
机译:航空柔性结构控制的主要挑战之一是不确定系统的非平稳特性。运输飞机的尺寸不断增加,但是由越来越轻的材料制成,因此它们的运动动力学表现出一些刚性的低频模式。由于从燃料转移到随机飞行条件的原因,这些飞机的参数在飞行过程中可能会发生重大变化。对如此大的不确定性具有鲁棒性的单一控制法则可能会限制其性能。因此,我们在这项工作中采用了自适应控制方法。给定现有的闭环系统,其中基本控制器控制刚体模式,关注的问题在于设计一种自适应控制器,该控制器可以处理系统的灵活模式,使得第一个控制器的性能不受影响。即使存在参数变化也会恶化。为此,我们遵循与Hovakimyan(2002)中提出的参考模型自适应控制方法类似的策略。刚性模式的基本模型被视为参考模型,基于神经网络的学习算法用于在线补偿未建模的动力学和参数变化的影响。然后,我们成功地将此控制策略应用于空客飞机的控制。这是一个非常高维的动力学模型(大约200个状态),其直接控制显然很困难。然而,通过将上述自适应控制技术应用于该方法,可以获得一些有希望的仿真结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号