首页> 外文OA文献 >Modified Independent Component Analysis for Initializing Non-negative Matrix Factorization : An approach to Hyperspectral Image Unmixing
【2h】

Modified Independent Component Analysis for Initializing Non-negative Matrix Factorization : An approach to Hyperspectral Image Unmixing

机译:用于初始化非负矩阵分解的修正独立分量分析:一种高光谱图像分解方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hyperspectral unmixing consists of identifying, from mixed pixel spectra, a set of pure constituent spectra (endmembers) in a scene and a set of abundance fractions for each pixel. Most linear blind source separation (BSS) techniques are based on Independent Component Analysis (ICA) or Non-Negative Matrix Factorization (NMF). Using only one of these techniques does not resolve the unmixing problem because of, respectively, the statistical dependence between the abundance fractions of the different constituents and the non-uniqueness of the NMF results. To overcome this issue, we propose an unsupervised unmixing approach called ModifICA-NMF (which stands for modified version of ICA followed by NMF). Consider the ideal case of a hyperspectral image combining (M-1) statistically independent source images, and an Mth image depending on them due to the sum-to-one constraint. Our modified ICA first estimates these (M-1) sources and associated mixing coefficients, then derives the remaining source and coefficients, while it also removes the BSS scale indeterminacy. In real conditions, the above (M-1) sources may be somewhat dependent. Our modified ICA method then only yields approximate data. These are then used as the initial values of an NMF method, which refines them. Our tests show that this joint modifICA-NMF approach significantly outperforms the considered classical methods.
机译:高光谱解混包括从混合像素光谱中识别场景中的一组纯成分光谱(端成员)和每个像素的一组丰度分数。大多数线性盲源分离(BSS)技术都是基于独立成分分析(ICA)或非负矩阵分解(NMF)。仅使用这些技术中的一种不能解决解混问题,这分别是由于不同成分的丰度分数与NMF结果的不唯一性之间的统计依赖性所致。为解决此问题,我们提出了一种无监督的混合方法,称为ModifICA-NMF(代表ICA的修改版本,后跟NMF)。考虑到高光谱图像合并(M-1)统计独立的源图像以及由于和一合一约束而依赖于它们的第M个图像的理想情况。我们经过修改的ICA首先估算这些(M-1)信号源和相关的混合系数,然后得出剩余的信号源和系数,同时还消除了BSS音阶不确定性。在实际条件下,上述(M-1)来源可能会有所依赖。然后,我们经过改进的ICA方法只能得出近似数据。然后将它们用作NMF方法的初始值,以对其进行优化。我们的测试表明,这种modifICA-NMF联合方法明显优于传统方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号