首页> 外文OA文献 >Observation and modeling of α-NiPtAl and Kirkendall void formations during interdiffusion of a Pt coating with a γ-(Ni-13Al) alloy at high temperature
【2h】

Observation and modeling of α-NiPtAl and Kirkendall void formations during interdiffusion of a Pt coating with a γ-(Ni-13Al) alloy at high temperature

机译:高温下γ-(Ni-13Al)合金Pt涂层相互扩散过程中α-NiPtAl和Kirkendall空隙形成的观察和建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

During the last 15 years, Pt-rich γ–γ′ bond-coatings have been studied extensively for their corrosion and oxidation resistance, and as a lower cost alternative to β-(Ni,Pt)Al bond-coatings in thermal barrier coating systems. To optimize their fabrication and durability, it is essential to investigate their interdiffusion with Ni-based superalloys. This study reports on experimental results and modeling of the interdiffusion of the model Pt/γ-(Ni-13Al) alloy system. Pt coatings were deposited either by electroplating or by spark plasma sintering using a Pt foil. Heat treatments at 1100 °C for 15min to 10 hwere performed either in a high-temperature X-ray diffraction device under primary vacuum or in a furnace under argon secondary vacuum. The α-NiPtAl phase with L10 crystal structure formed very rapidly, implying fast uphill Al diffusion toward the surface. For Pt electroplating, α-phase transformed to γ′-(Ni,Pt)3Al after only 45 min–1 h at 1100 °C. The resulting two-phased γ–γ′ microstructure remained up to 10 h. When using a Pt foil coating, the continuous layer of α-NiPtAl phase disappeared after 10 h and the γ′-(Ni,Pt)3Al or γ-(Ni,Pt,Al) phase appeared, resulting in two different diffusion paths in the Ni–Pt–Al phase diagram. Voids also formed at the interdiffusion zone/substrate interface for both systems after 1 h or more. Composition analyses confirmed that voids were located at the Pt diffusion front corresponding to the Al-depleted zone. Experiments performed with the samples coated with a Pt foil confirmed that voids are due to a Kirkendall effect and not to the Pt deposition process. Numerical simulations including the cross-term diffusion coefficients in the diffusion flux equations reproduced the experimental concentration profiles for the γ-phased systems.
机译:在过去的15年中,对富含Pt的γ-γ'粘结涂层的耐腐蚀性和抗氧化性进行了广泛的研究,并作为热障涂层系统中β-(Ni,Pt)Al粘结涂层的低成本替代品。为了优化其制造和耐用性,必须研究它们与镍基高温合金的相互扩散。这项研究报告了模型Pt /γ-(Ni-13Al)合金体系相互扩散的实验结果和建模。通过电镀或通过使用Pt箔的火花等离子体烧结来沉积Pt涂层。在初级真空下的高温X射线衍射仪中或在氩气次级真空下的炉中在1100°C下进行15分钟至10 h的热处理。具有L10晶体结构的α-NiPtAl相非常迅速地形成,这意味着Al迅速向表面扩散。对于Pt电镀,在1100°C仅45 min–1 h后,α相转变为γ'-(Ni,Pt)3Al。由此产生的两相γ–γ'微观结构保持长达10小时。当使用Pt箔涂层时,α-NiPtAl相的连续层在10小时后消失,并且出现了γ'-(Ni,Pt)3Al或γ-(Ni,Pt,Al)相,从而导致了两种不同的扩散路径。 Ni–Pt–Al相图。 1小时或更长时间后,两个系统的互扩散区/底物界面也形成了空隙。成分分析证实,空隙位于对应于Al耗尽区的Pt扩散前沿。用涂有Pt箔的样品进行的实验证实,空隙是由于柯肯德尔效应而不是Pt沉积过程引起的。在扩散通量方程中包含交叉项扩散系数的数值模拟再现了γ相系统的实验浓度曲线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号