首页> 外文OA文献 >A Novel Bias Correction Method for Soil Moisture and Ocean Salinity (SMOS) Soil Moisture: Retrieval Ensembles
【2h】

A Novel Bias Correction Method for Soil Moisture and Ocean Salinity (SMOS) Soil Moisture: Retrieval Ensembles

机译:土壤水分和海洋盐分(SMOS)土壤水分的一种新的偏差校正方法:检索集合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bias correction is a very important pre-processing step in satellite data assimilation analysis, as data assimilation itself cannot circumvent satellite biases. We introduce a retrieval algorithm-specific and spatially heterogeneous Instantaneous Field of View (IFOV) bias correction method for Soil Moisture and Ocean Salinity (SMOS) soil moisture. To the best of our knowledge, this is the first paper to present the probabilistic presentation of SMOS soil moisture using retrieval ensembles. We illustrate that retrieval ensembles effectively mitigated the overestimation problem of SMOS soil moisture arising from brightness temperature errors over West Africa in a computationally efficient way (ensemble size: 12, no time-integration). In contrast, the existing method of Cumulative Distribution Function (CDF) matching considerably increased the SMOS biases, due to the limitations of relying on the imperfect reference data. From the validation at two semi-arid sites, Benin (moderately wet and vegetated area) and Niger (dry and sandy bare soils), it was shown that the SMOS errors arising from rain and vegetation attenuation were appropriately corrected by ensemble approaches. In Benin, the Root Mean Square Errors (RMSEs) decreased from 0.1248 m3/m3 for CDF matching to 0.0678 m3/m3 for the proposed ensemble approach. In Niger, the RMSEs decreased from 0.14 m3/m3 for CDF matching to 0.045 m3/m3 for the ensemble approach.
机译:偏差校正是卫星数据同化分析中非常重要的预处理步骤,因为数据同化本身无法规避卫星偏差。我们介绍了一种针对土壤水分和海洋盐分(SMOS)土壤水分的特定于检索算法的空间异质瞬时视场(IFOV)偏差校正方法。就我们所知,这是第一篇使用检索集成来介绍SMOS土壤水分概率表示的论文。我们举例说明,检索集合以有效的计算方式有效缓解了西非亮度温度误差引起的SMOS土壤水分的高估问题(合计大小:12,无时间积分)。相反,由于依赖于不完美参考数据的局限性,现有的累积分布函数(CDF)匹配方法大大增加了SMOS偏置。从在贝宁(中等湿润和植被区)和尼日尔(干燥和沙质裸露的土壤)这两个半干旱地点进行的验证,可以看出,通过集成方法可以适当地校正由降雨和植被衰减引起的SMOS误差。在贝宁,均方根误差(RMSE)从CDF匹配的0.1248 m3 / m3降低到建议的集成方法的0.0678 m3 / m3。在尼日尔,RMSE从CDF匹配的0.14 m3 / m3降低到整体方法的0.045 m3 / m3。

著录项

  • 作者

    Lee Ju Hyoung; Im Jungho;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 ENG
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号