首页> 外文OA文献 >Entanglement-based perturbation theory for highly anisotropic Bose-Einstein condensates
【2h】

Entanglement-based perturbation theory for highly anisotropic Bose-Einstein condensates

机译:高度各向异性的玻色-爱因斯坦凝聚物的基于缠结的扰动理论

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We investigate the emergence of three-dimensional behavior in a reduced-dimension Bose-Einstein condensate trapped by a highly anisotropic potential. We handle the problem analytically by performing a perturbative Schmidt decomposition of the condensate wave function between the tightly confined (transverse) direction(s) and the loosely confined (longitudinal) direction(s). The perturbation theory is valid when the nonlinear scattering energy is small compared to the transverse energy scales. Our approach provides a straightforward way, first, to derive corrections to the transverse and longitudinal wave functions of the reduced-dimension approximation and, second, to calculate the amount of entanglement that arises between the transverse and longitudinal spatial directions. Numerical integration of the three-dimensional Gross-Pitaevskii equation for different cigar-shaped potentials and experimentally accessible parameters reveals good agreement with our analytical model even for relatively high nonlinearities. In particular, we show that even for such stronger nonlinearities the entanglement remains remarkably small, which allows the condensate to be well described by a product wave function that corresponds to a single Schmidt term.
机译:我们调查了三维行为的出现,该三维行为是由高各向异性电势所俘获的低维玻色-爱因斯坦冷凝物。我们通过对紧密约束(横向)方向和松散约束(纵向)方向之间的凝结波函数进行微扰式施密特分解,来分析解决该问题。当非线性散射能量小于横向能级时,摄动理论是有效的。我们的方法提供了一种简单的方法,首先是对降维近似的横向和纵向波函数进行校正,其次是计算在横向和纵向空间方向之间产生的纠缠量。对于不同的雪茄形电势和实验可访问的参数,三维Gross-Pitaevskii方程的数值积分表明,即使对于较高的非线性,也与我们的分析模型具有很好的一致性。特别是,我们表明,即使对于这种更强的非线性,缠结也仍然非常小,这使凝结水可以由对应于单个Schmidt项的乘积波函数很好地描述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号