首页> 外文OA文献 >Mathematical and computational methods for functional-structural plant modelling using L-systems and their applications to modelling the kiwifruit vine
【2h】

Mathematical and computational methods for functional-structural plant modelling using L-systems and their applications to modelling the kiwifruit vine

机译:使用L系统进行功能结构植物建模的数学和计算方法及其在猕猴桃藤建模中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mathematical and computational modelling provides a framework within which the understanding of plant growth and development can be further advanced. By abstracting from reality, it provides a way to test our hypotheses of the behaviour of real plants, offers simple explanations of observed phenomenon, and allows us to make quantitative predictions under new conditions. In particular, functional-structural plant models are well suited for these types of studies, because they capture the complex interactions between plant architecture and physiological processes as governed by the environment. The aim of this research was to investigate and develop mathematical and computational methods for use in functional-structural plant modelling, and, in particular, to allow easy incorporation of various aspects of plant growth and development at different spatial and temporal scales into one complex dynamical system. To this end, a functional-structural kiwifruit vine model was constructed using an L-system based plant modelling platform. The model was used to integrate the kiwifruit vineu27s architectural development with mechanistic modelling of carbon transport and allocation. The branching pattern was captured at the individual shoot level by modelling axillary shoot development using a discrete-time Markov chain. An existing carbon transport-resistance model was extended to account for several source/sink components of individual plant elements. The model was then interfaced with the light simulation program QuasiMC, and used to estimate the absorbed irradiance of each leaf during the course of the vineu27s development. Furthermore, the operation of QuasiMC was illustrated and analysed using an abstract virtual canopy (a triangle mix) and the kiwifruit vine model as examples. Several simulations, inspired by biological experiments, were performed to illustrate the capabilities of the kiwifruit model, including the plastic response of shoot growth to local carbon supply, the branching patterns of two Actinidia species, the effect of carbon limitation and topological distance on fruit size, and the complex behaviour of sink competition for carbon. The model was able to represent the major features of kiwifruit growth and function, and provided a solid foundation for investigating plant modelling methodology. A major challenge in functional-structural plant modelling is the integration of several previously modelled aspects of plant function into one model. To meet this challenge, the kiwifruit model provided the inspiration for extending L-systems with a new modules of modules approach, which combines pseudo-L-systems with sets of productions and lists of modules to consider within those sets. Using the new approach, a model of a kiwifruit shoot was constructed that integrates previously modelled aspects of the shootu27s architecture with carbon dynamics, apical dominance and biomechanics. In the short term, the kiwifruit model will be used to help explore the vineu27s physiology and genetic control. For example, it will help give a physiological interpretation of experimental results on competition for carbon between vegetative and reproductive components of the vine. In the long term, it will serve as the basis for development of decision support systems to help improve kiwifruit production.
机译:数学和计算建模提供了一个框架,在该框架内可以进一步提高对植物生长和发育的理解。通过从现实中抽象出来,它提供了一种方法来检验我们对真实植物行为的假设,提供对观察到的现象的简单解释,并允许我们在新条件下进行定量预测。特别是功能结构的植物模型非常适合这些类型的研究,因为它们捕获了受环境控制的植物结构与生理过程之间的复杂相互作用。这项研究的目的是研究和开发用于功能结构植物建模的数学和计算方法,尤其是允许将不同时空尺度上植物生长和发育的各个方面轻松整合到一个复杂的动力学中。系统。为此,使用基于L系统的植物建模平台构建了功能结构的奇异果藤模型。该模型用于将奇异果藤的建筑发展与碳传输和分配的机械模型相结合。通过使用离散时间马尔可夫链对腋生芽发育进行建模,可以在单个芽水平上捕获分支模式。扩展了现有的碳传输阻力模型,以说明单个植物元素的几个源/汇成分。然后将该模型与光仿真程序QuasiMC进行接口,并用于估计葡萄树发育过程中每片叶子的吸收辐照度。此外,以抽象的虚拟树冠(三角形混合)和奇异果树模型为例,说明并分析了QuasiMC的操作。受到生物学实验的启发,进行了一些模拟,以说明奇异果模型的功能,包括枝条生长对局部碳供应的塑性响应,两个猕猴桃物种的分支模式,碳限制和拓扑距离对果实大小的影响以及碳汇竞争的复杂行为。该模型能够代表奇异果生长和功能的主要特征,并为研究植物建模方法奠定了坚实的基础。功能结构植物建模的主要挑战是将植物功能的多个先前建模的方面集成到一个模型中。为了迎接这一挑战,奇异果模型为使用新的模块模块方法扩展L系统提供了灵感,该方法将伪L系统与产品集和模块列表结合使用。使用新方法,建立了奇异果芽的模型,该模型将芽模型的先前建模方面与碳动力学,顶端优势和生物力学相结合。在短期内,猕猴桃模型将用于帮助探索葡萄的生理和遗传控制。例如,它将有助于对葡萄的营养成分和生殖成分之间的碳竞争进行实验结果的生理解释。从长远来看,它将作为开发决策支持系统以帮助提高奇异果产量的基础。

著录项

  • 作者

    Mikolaj Cieslak;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号