首页> 外文OA文献 >Studying complex fluid dynamics - from direct numerical simulations to tomographic digital holographic particle image velocimetry
【2h】

Studying complex fluid dynamics - from direct numerical simulations to tomographic digital holographic particle image velocimetry

机译:研究复杂的流体动力学-从直接数值模拟到层析X射线数字全息颗粒图像测速仪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fluid Mechanics is an example of a complex dynamical system with uncountable applications in industry, transportation, manufacturing, medicine, atmospheric sciences, oceanography, hydrology, ionised gases or plasma, the earth’s interior and space plasma turbulence. The scales of the fluid flows in these applications vary widely in the range from microns, as seen in the blood flow of living organisms, micro electro-mechanical system and micro-reactors to thousands of km in atmospheric, oceanographic and astrophysical flows. There are basically two approaches to the study of the three-dimensional spatiotemporal dynamics of complex fluid flows: experimental and numerical with both relying heavily on theory to interpret and explain the results. Complex flows such a turbulence, interaction between shear flows and fluidic actuators (flow control) are examples of flows which exhibit a wide range of coherent structures interacting in a complex fashion. The identification of the coherent structures is important in order to extract knowledge regarding the scales, kinematics and dynamics of these structures. The use of invariant quantities and topological methodology is a useful approach in this endeavor. In the topological approach introduced by [6], which has its roots in critical point theory [10], the structure and evolution of the velocity gradient tensor, the rate-of-strain tensor and the rate-of-rotation tensor are carried out by not studying these tensors directly but by studying their invariants. Examples of studies that have used this methodology to gain physical insight into the structure of various complex flows include the study of: transitional mixing layer and wakes [4, 11, 13, 12, 9]; the structure of homogeneous and homogeneous isotropic turbulence [14, 2, 3, 5, 8]; and wall-bounded turbulent flows [1, 7]. Topological methodology will be reviewed and how topological methodology can be used to visualize spatial and temporal structures using data from direct numerical simulations and some novel experimental measurement techniques will be illustrated. The main and more recent techniques in numerical and experimental techniques are also reviewed and by drawing on examples from research in our laboratory and that of others the specific and complementary nature of these two approaches is presented.
机译:流体力学是复杂动力系统的一个例子,在工业,运输,制造,医学,大气科学,海洋学,水文学,电离气体或等离子,地球内部和空间的等离子湍流中无数的应用。在这些应用中,流体的流动范围从微米(如活生物体,微型机电系统和微型反应器的血液流动)到大气,海洋和天体物理流动的数千公里,变化范围很大。研究复杂流体三维时空动力学的方法基本上有两种:实验方法和数值方法,两者都严重依赖于理论来解释和解释结果。复杂的流,例如湍流,剪切流和流体致动器之间的相互作用(流控制)是流的示例,这些流表现出以复杂方式相互作用的各种相干结构。为了提取有关这些结构的尺度,运动学和动力学的知识,相干结构的识别很重要。在此过程中,使用不变数量和拓扑方法是一种有用的方法。在[6]介绍的拓扑方法中,它起源于临界点理论[10],其中进行了速度梯度张量,应变率张量和旋转率张量的结构和演化。不是直接研究这些张量,而是研究它们的不变量。使用这种方法获得各种复杂流的结构的物理见解的研究实例包括:过渡混合层和尾流[4,11,13,12,9];均质和均质各向同性湍流的结构[14、2、3、5、8];和有边界的湍流[1,7]。将审查拓扑方法,并说明如何使用拓扑方法将直接数值模拟的数据和一些新颖的实验测量技术用于显示时空结构。还回顾了数值和实验技术中的主要技术和最新技术,并通过借鉴我们实验室研究的实例以及其他方法的实例,介绍了这两种方法的具体和互补性。

著录项

  • 作者

    Soria J.;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号