首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Unveiling the Flow Behavior Inside Gasoline Direct Injection Engine Cylinder Using High-Speed Time-Resolved Particle Image Velocimetry and Computational Fluid Dynamics Simulation
【24h】

Unveiling the Flow Behavior Inside Gasoline Direct Injection Engine Cylinder Using High-Speed Time-Resolved Particle Image Velocimetry and Computational Fluid Dynamics Simulation

机译:使用高速时间分辨粒子图像速度和计算流体动力学模拟揭示汽油直喷发动机缸内的流动性能

获取原文
获取原文并翻译 | 示例
           

摘要

RICARDO-VECTIS computational fluid dynamics simulation of the in-cylinder air flow was first validated with those of the experimental results from high-speed particle image velocimetry (PIV) measurements taking cognizant of the midcylinder tumble plane. Furthermore, high-speed fuel spray measurements were carried out simultaneously with the intake-generated tumble motion at high valve lift using high-speed time-resolved PIV to chronicle the spatial and time-based development of air/fuel mixture. The effect of injection pressure(32.5 and 35.0MPa) and pressure variation across the air intake valves(150,300, and 450 mmH_2O) on the interaction process were investigated at a valve lift 10 mm where the tumble vortex was fully developed and filled the whole cylinder under steady-state conditions. The PTV results illustrated that the intake generated-tumble motion had a substantial impact on the fuel spray distortion and dispersion inside the cylinder. During the onset of the injection process, the tumble motion diverted the spray plume slightly toward the exhaust side before it followed completely the tumble vortex. The fuel spray plume required 7.2 ms, 6.2 ms, and 5.9 ms to totally follow the in-cylinder air motion for pressure differences 150, 300, and 450mmH_2O, respectively. Despite, the spray momentum was the same for the same injection pressure, the magnitude of kinetic energy was different for different cases of pressure differences and subsequently the in-cylinder motion strength.
机译:Ricardo-Vectis缸内空气流量的计算流体动力学模拟首先用来自高速粒子图像速度(PIV)测量的实验结果验证,所述高速粒子图像速度(PIV)测量以获得中间曲线滚筒平面的认识。此外,使用高速时间分辨的PIV在高阀升力下同时进行高速燃料喷射测量,以纪录于空气/燃料混合物的空间和时间的开发。在阀升10mm处研究了注射压力(32.5和35.0MPa)和进气阀(150,300和450mmH_2o)上的进气阀(150,300和450mmH_2o)的效果。滚动涡流完全开发并填充全缸在稳态条件下。 PTV结果示出了进气导致翻滚运动对汽缸内部的燃料喷雾变形和分散的显着影响。在注射过程的开始期间,翻滚运动在完全滚动涡流之前将喷雾羽毛略微向排气侧转移到排气侧。燃料喷涂羽流量需要7.2 ms,6.2ms和5.9ms,分别完全遵循压力差150,300和450mMH_2O的缸内空气运动。尽管如此,对于相同的喷射压力,喷射动力是相同的,对于不同的压力差的情况以及随后的缸内运动强度,动能的大小不同。

著录项

  • 来源
    《Journal of Engineering for Gas Turbines and Power》 |2021年第10期|101017.1-101017.14|共14页
  • 作者单位

    Mechanical Engineering Department Faculty of Engineering Alexandria University Alexandria 21544 Egypt;

    School of Computing Engineering and Mathematics University of Brighton Brighton BN2 4GJ UK;

    Mechanical Engineering Department Universiti Teknologi PETRONAS Seri Iskandar Perak 32610 Malaysia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号