It is considered the integrated process $X(t)= x + intud_0^t Y(s) ds ,$ where $Y(t)$ is a Gauss-Markov process startingudfrom $y.$ The first-passage time (FPT) of $X$ through a constantudboundary and the first-exit time of $X$ from an interval $(a,b)$udare investigated, generalizing some results on FPT of integratedudBrownian motion. An essential role is played by a usefuludrepresentation of $X,$ud%in terms of Brownian motionudwhich allowsudto reduces the FPT of $X$ to that of a time-changed Brownianudmotion. Some explicit examples are reported; when theoreticaludcalculation is not available, the quantities of interest areudestimated by numerical computation.
展开▼
机译:它被认为是集成过程$ X(t)= x + int ud_0 ^ t Y(s)ds,$,其中$ Y(t)$是从$ y开始 ud的高斯-马可夫过程。通过常数 udbound的$ X $的通过时间(FPT)和从区间$(a,b)$ uda的$ X $的首次离开时间进行了研究,归纳了关于 udBrownian运动的FPT的一些结果。 $ X的有用 ud表示,$ ud%在布朗运动 ud方面起着至关重要的作用,这允许 udto将$ X $的FPT减小为时变的Brownian udmotion。报告了一些明确的例子。当无法进行理论计算时,将通过数值计算来估算感兴趣的数量。
展开▼