首页> 外文OA文献 >A new approach to multivariate extreme value theory : f-implicit max-infinitely divisible distributions and f-implicit max-stable processes
【2h】

A new approach to multivariate extreme value theory : f-implicit max-infinitely divisible distributions and f-implicit max-stable processes

机译:多元极值理论的一种新方法:f隐式max-无限可整分布和f隐式max-稳定过程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Let X1,...,Xn be independent and identically distributed random vectors in R^d and f:R^d -> [0,∞) a suitable function being referred to as the loss function. Further, let k(n) = argmax(f(X1),…, f(Xn)). Referring to [SchSt14, Definition 4.1], recall that a random vector X in R^d is f-implicit max-stable if for all n >= 1 there exist an>0 such that an^{-1}X{k(n)} and X are equal in distribution, with X1,...,Xn being independent copies of X. Now, the aim is to expand on this notion and to advance it. To this end, a new mathematical framework called f-implicit extreme value theory, which is closely related to multivariate extreme value theory but yet different as to the study of extremes, is developed. More precisely, adopting the approach suggested in [SchSt14], the idea of focusing on extreme loss events rather than extreme values is pursued. The motivation behind this stems from some kind of inverse problem where one wants to determine the extremal behavior of an R^d-valued random vector X when only explicitly observing the extremal loss f(X). In the first part of the thesis, some basics constituting the fundament of all further deliberations are introduced. In particular, this includes a specific (inner) binary operation on R^d called f-implicit max-operation, an astute convolution concept being referred to as f-implicit max-convolution and a distinctive partial order named f-implicit max-order. Finally, various possibilities to estimate the distribution of the f-implicit maximum X{k(n)} of X1,...,Xn are provided.Equipped with these aspects, the notion of f-implicit max-infinite divisibility is developed, thus extending the class of f-implicit max-stable distributions. Here, it is proved that all random vectors coming under one of two specific classes of random vectors are f-implicit max-infinitely divisible. To this end, the notion of f-implicit max-convolution semigroups is applied.The third part of the thesis deals with the class of f-implicit max-stable processes being the analogue of max-stable processes. In order to provide non-trivial examples of such processes, the ingenious concepts of f-implicit sup-measures and f-implicit extremal integrals are established.The thesis concludes with several suggestions for additional research possibilities which might refine the novel field of f-implicit extreme value theory.
机译:令X1,...,Xn是R ^ d和f:R ^ d-> [0,∞)中的独立且均匀分布的随机向量,这种合适的函数称为损失函数。另外,令k(n)= argmax(f(X1),…,f(Xn))。参考[SchSt14,定义4.1],请记住,如果对于所有n> = 1都存在一个> 0,使得an ^ {-1} X {k( n)}和X的分布相等,其中X1,...,Xn是X的独立副本。现在,我们的目标是扩展这个概念并将其推进。为此,开发了一种新的数学框架,称为f-隐式极值理论,它与多元极值理论密切相关,但在极值研究方面却有所不同。更准确地说,采用[SchSt14]中建议的方法,追求的重点是极端损失事件而不是极端值。其背后的动机来自某种反问题,当人们仅明确观察到极值损失f(X)时,便想确定R ^ d值的随机向量X的极值行为。在论文的第一部分中,介绍了构成所有进一步讨论基础的一些基础知识。特别地,这包括在R ^ d上的一个特定的(内部)二进制运算,称为f隐式最大卷积,一个精巧的卷积概念被称为f隐式最大卷积,一个独特的偏序称为f隐式最大阶。 。最后,提供了各种估计X1,...,Xn的f隐式最大值X {k(n)}的分布的可能性。结合这些方面,提出了f隐式最大无穷除数的概念,从而扩展了f隐式最大稳定分布的类别。在这里,证明了属于两个特定类别的随机向量之一的所有随机向量都是f隐式max-无限可整的。为此,应用了f-隐式最大卷积半群的概念。论文的第三部分讨论了f-隐式最大稳定过程的类,它是最大稳定过程的类似物。为了提供此类过程的非平凡实例,建立了f隐式对策和f隐式极值积分的巧妙概念。本文最后提出了一些建议,为进一步研究f的潜在领域提出了一些建议,这些建议可能会完善f-隐含的极值理论。

著录项

  • 作者

    Goldbach Johannes;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号