首页> 外文OA文献 >Higher-order accurate and energy-momentum consistent discretisation of dynamic finite deformation thermo-viscoelasticity
【2h】

Higher-order accurate and energy-momentum consistent discretisation of dynamic finite deformation thermo-viscoelasticity

机译:动态有限变形热粘弹性的高阶精确和动量一致离散

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper is concerned with the energy consistent simulation of motions of a viscoelastic continuum body, under inclusion of the coupling of thermal and mechanical fields. The corresponding algorithm is based on a four-field formulation in the Lagrangian description, in which the deformation mapping, the velocity field, the temperature field and a strain-like viscous internal variable field are independent unknowns. Hence, the equations of motion are formulated in first-order form. The Lagrangian temperature field is determined by the first-order entropy evolution equation, associated with Fourieru27s law of heat conduction. The first-order viscous evolution equation is derived from an internal dissipation being quadratic in a nonlinear viscous strain-rate tensor. This coupled system of nonlinear differential equations is discretised by a new space-time finite element method, consisting of continuous as well as discontinuous finite element approximations in time. Owing to particular time approximations in the constitutive laws, beside the total linear momentum as well as the total angular momentum balance, a nonlinear stability estimate with respect to a relative energy function is exactly fulfilled in the fully discrete case as well.Hence, the resulting time integration algorithm is long-time nonlinear stable also when changing the time step size. The obtained coupled system of nonlinear algebraic equations is solved by a monolithic solution strategy. The corresponding Newton-Raphson methods on the global and the element level are based on a consistent linearisation. The new convergence criteria used for these iterative solution procedures take the energy consistency into account, and is free of the scaling in the independent variables. Representative numerical simulations with various boundary conditions show the higher-order accuracy and the superior stability of the new time integration algorithm.
机译:本文涉及粘弹性连续体运动的能量一致性模拟,其中包括热场和机械场的耦合。相应的算法基于拉格朗日描述中的四场公式,其中变形映射,速度场,温度场和类似应变的粘性内部变量场是独立的未知数。因此,运动方程式被表述为一阶形式。拉格朗日温度场由一阶熵演化方程确定,该方程与热传导的傅立叶定律相关。一阶粘性演化方程是从非线性粘性应变率张量中的二次耗散得到的。这种非线性微分方程的耦合系统通过一种新的时空有限元方法离散化,该方法由时间上的连续和不连续有限元组成。由于本构定律中的特定时间近似关系,除了总线性动量和总角动量平衡之外,在完全离散的情况下,也完全可以实现相对能量函数的非线性稳定性估计。当改变时间步长时,时间积分算法是长期非线性稳定的。所获得的非线性代数方程的耦合系统通过整体求解策略求解。整体和元素级别上相应的Newton-Raphson方法基于一致的线性化。用于这些迭代求解过程的新收敛准则考虑了能量一致性,并且没有自变量的缩放。具有各种边界条件的代表性数值模拟表明,新的时间积分算法具有更高的精度和更高的稳定性。

著录项

  • 作者

    Groß Michael;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号