首页> 外文OA文献 >Fusing sonars and LRF data to perform SLAM in reduced visibility scenarios
【2h】

Fusing sonars and LRF data to perform SLAM in reduced visibility scenarios

机译:融合声纳和LRF数据以在可见度降低的情况下执行SLAM

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Simultaneous Localization and Mapping (SLAM) approaches have evolved considerably in recent years. However, there are many situations which are not easily handled, such as the case of smoky, dusty, or foggy environments where commonly used range sensors for SLAM are highly disturbed by noise induced in the measurement process by particles of smoke, dust or steam. This work presents a sensor fusion method for range sensing in Simultaneous Localization and Mapping (SLAM) under reduced visibility conditions. The proposed method uses the complementary characteristics between a Laser Range Finder (LRF) and an array of sonars in order to ultimately map smoky environments. The method was validated through experiments in a smoky indoor scenario, and results showed that it is able to adequately cope with induced disturbances, thus decreasing the impact of smoke particles in the mapping task.
机译:近年来,同时定位和制图(SLAM)方法已发生了很大的发展。但是,在很多情况下不容易处理,例如在烟雾弥漫,多尘或有雾的环境中,通常用于SLAM的距离传感器会受到测量过程中由烟,灰尘或蒸汽颗粒引起的噪声的严重干扰。这项工作提出了一种传感器融合方法,用于在可视性降低的情况下进行同时定位和制图(SLAM)的距离感测。所提出的方法使用了激光测距仪(LRF)和声纳阵列之间的互补特性,以便最终绘制出烟雾弥漫的环境。通过在烟熏室内的实验中对该方法进行了验证,结果表明该方法能够充分应对诱发的干扰,从而减少了烟尘对制图任务的影响。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号