首页> 外文OA文献 >New ongoing commissioning approach of central plants: methodology and case study
【2h】

New ongoing commissioning approach of central plants: methodology and case study

机译:中央工厂正在进行的新调试方法:方法和案例研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This research project proposes a new methodology and tool to perform ongoing commissioning of central plants. The proposed methodology includes a new approach for the development and use of benchmarking models in the context of ongoing commissioning. Different techniques are explored to establish the benchmarking models: (1) a static approach, which is based on pre-defined training set size and established different models for week days and weekend & holidays, or (2) window techniques, which are either augmented or sliding. Two different types of benchmark models are evaluated: correlation-based and Artificial Neural Network (ANN) models. ududThe proposed ongoing commissioning methodology is evaluated for two chillers installed in the central plant of the Concordia Sciences Building (CSB). Both chillers have identical capacity and performance characteristics; however, they have quite different operating hours. The results show that models developed with seven days of data monitored at the beginning of the summer season provide accurate results over the remaining of the summer and for the following summer. For the chillers used in the case study, the proposed multivariable polynomial (MP) models provide the most accurate prediction with CV(RMSE) below 7% over the remaining of the summer season, and below 8% for the following summer season.ududAs part of the ongoing commissioning approach, measured data used to develop the benchmarking models combined with manufacturer’s information were also used to develop a calibrated computer model of the CSB central cooling plant in TRNSYS. User input files were modified to reflect the operating characteristics of the equipment installed in the central plant and a control equation was proposed for the cooling towers. The simulation results were in good agreement with the monitored data, with CV(RMSE) that do not exceed 5.5% for water temperature at key locations, 12.5% for the electric power input of the cooling equipment, and 18.6% for the COP of chillers and various groups of equipment. The Relative Error (R.E.) calculated over the summer season for the cooling electricity used is within ±15.6%. ududThe approach undertaken to calibrate the CSB central cooling plant showed that it is possible to develop a calibrated model using measurements already available from the Monitoring and Data Acquisition System (MDAS) and manufacturer data, without modifying by trial-and-error some variables or using stochastic approaches.
机译:该研究项目提出了一种新的方法论和工具来执行中央工厂的持续调试。拟议的方法包括在不断调试的情况下开发和使用基准模型的新方法。探索了不同的技术来建立基准模型:(1)一种静态方法,该方法基于预定义的训练集大小并针对工作日以及周末和节假日建立了不同的模型,或者(2)窗口技术,这些方法都得到了增强或滑动。评估了两种不同类型的基准模型:基于相关的模型和人工神经网络(ANN)模型。 ud ud对安装在Concordia科学大楼(CSB)中央工厂中的两个冷却器的拟议正在进行的调试方法进行了评估。两台冷水机具有相同的容量和性能特征。但是,它们的工作时间完全不同。结果表明,在夏季开始时使用7天的数据监视开发的模型在夏季剩余的时间和次年夏季提供了准确的结果。对于在案例研究中使用的冷水机,所提出的多元多项式(MP)模型提供了最准确的预测,在整个夏季剩余时间内CV(RMSE)低于7%,在接下来的夏季低于8%。 ud作为正在进行的调试方法的一部分,用于开发基准测试模型的测量数据与制造商的信息也被用于开发TRNSYS中CSB中央冷却设备的校准计算机模型。修改了用户输入文件以反映安装在中央工厂中的设备的运行特性,并提出了冷却塔的控制方程式。仿真结果与监测数据非常吻合,关键位置的水温CV(RMSE)不超过5.5%,冷却设备的电力输入不超过12.5%,冷却器COP则不超过18.6%。以及各种设备。在夏季计算出的所用冷却电力的相对误差(R.E.)在±15.6%之内。 ud ud校准CSB中央冷却设备的方法表明,可以使用监控和数据采集系统(MDAS)已有的测量值和制造商数据来开发校准模型,而无需通过反复试验进行修改变量或使用随机方法。

著录项

  • 作者

    Monfet Danielle;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号