首页> 外文OA文献 >Quantitative explorations of graduate learners' monitoring proficiencies and task understandings in the context of ill-structured writing assignments : from learner to work task as unit of analysis
【2h】

Quantitative explorations of graduate learners' monitoring proficiencies and task understandings in the context of ill-structured writing assignments : from learner to work task as unit of analysis

机译:不良结构的写作作业中对研究生学习能力和任务理解的定量探索:从学习者到工作任务为分析单位

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Research has debated the degree of domain generality of monitoring skills through the theoretical lens of self-regulated learning, largely in the context of studies involving college/undergraduate-level objective, multiple-choice tests. The present quantitative study sheds some much-needed light on the nature of monitoring skills in 39 adult learners tackling ill-structured writing tasks for a graduate-level e-learning theory course in the domain of educational technology. Performance prediction and confidence in predictions were collected through a theoretically-grounded self-assessment tool termed TAPE (Task Analyzer and Performance Evaluator). Monitoring proficiencies were calculated using the instructor's assessment of performance and the TAPE-related measures. Using "learner" as unit of analysis, repeated measures procedures reveal improvements in the instructor's assessment of performance but not in any monitoring proficiencies. While the task-generality of the monitoring skills of discrimination and bias is confirmed through correlational analyses, facets of their specificities stand out due to the absence of intra-monitoring measure correlations. Subsequently, using the 247 instances of the writing task as unit of analysis, parametric multiple regression procedures demonstrate that 39% of variance in individual essay performance is predicted by combined variances in absolute prediction accuracy, discrimination, performance prediction and self-assessment scores. In addition, non-parametric ordinal and multinomial regression procedures reveal that individual essay performance can be predicted from the monitoring measures of bias, prediction confidence and absolute prediction accuracy, as well as from the self-assessment scores. The dual levels of analyses allow not only the quantitative description of learners' content-specific calibration of performance on a writing task, but also contextualized, essay-specific insight into how individual performance on an instance of the writing task is influenced by measures of monitoring and task understanding. Results are interpreted in light of the novel procedures undertaken in calculating monitoring measures like bias using the theoretical notion of performance prediction capability. Findings are also discussed with respect to the "work task as unit of analysis" approach which enables not only the generalization to the tasks completed for the specific course described in this study, but also the interchangeability of the tasks when treating variables such as time, class session, individual student and gender as fixed effects in the various regression approaches adopted for analyses
机译:研究已经通过自我调节学习的理论角度对监控技能的领域普遍性程度进行了辩论,主要是在涉及大学/本科水平的客观选择测试的研究中。目前的定量研究为39名成人学习者监控技能的性质提供了一些急需的知识,这些学习者在教育技术领域解决研究生级电子学习理论课程的结构错误的写作任务。性能预测和对预测的信心是通过称为TAPE(任务分析器和性能评估器)的具有理论基础的自我评估工具收集的。使用教师的绩效评估和与TAPE相关的措施来计算监控水平。使用“学习者”作为分析单位,重复的测量程序显示出对教师绩效评估的改善,但没有任何监控水平。尽管通过相关分析确认了歧视和偏见的监测技能的任务一般性,但由于缺乏内部监测指标的相关性,其特异性方面突出。随后,使用247个写作任务实例作为分析单位,参数多元回归过程表明,个人论文成绩的39%差异是由绝对预测准确性,区分力,绩效预测和自我评估得分的综合差异预测的。此外,非参数序数和多项式回归程序显示,可以根据偏见,预测置信度和绝对预测准确性的监测指标以及自我评估得分来预测个人论文的表现。双重分析不仅可以定量描述学习者对写作任务的特定于内容的绩效校准,还可以根据情境,论文特定的见解来了解写作任务实例的个人绩效如何受到监控措施的影响和任务理解。根据使用性能预测能力的理论概念计算监控措施(如偏差)时采用的新颖程序来解释结果。还讨论了有关“以分析为单位的工作任务”方法的发现,该方法不仅可以概括本研究中描述的特定课程所完成的任务,而且还可以在处理诸如时间,课堂会议,学生和性别作为分析中采用的各种回归方法的固定影响

著录项

  • 作者

    Venkatesh Vivek;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号