首页> 外文OA文献 >Classification of Sweden’s forest and alpine vegetation using optical satellite and inventory data
【2h】

Classification of Sweden’s forest and alpine vegetation using optical satellite and inventory data

机译:使用光学卫星和清单数据对瑞典的森林和高山植被进行分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Creation of accurate vegetation maps from optical satellite data requires use of reference data to aid in interpretation or to verify map results. Reference data may be taken, for example, from field visits, aerial photo-interpretation, or ground-based inventories. National inventories are a potential source of reference data useful in land cover mapping projects.This thesis addresses aspects of mapping forest and alpine vegetation in Sweden through combined use of optical satellite data and inventory data. Issues such as reference and satellite data pre-processing, spatial scale, quantity and quality of reference data, and classification methods have been examined. Optical satellite data with pixel sizes ranging from 10 to 300 m have been used together with reference data from the Swedish National Forest Inventory (NFI), National Inventory of Landscapes in Sweden (NILS), a point sample based on the Terrestrial Habitat Monitoring program (THUF), and a forest stand database. Results include modifications to common remote sensing methods, such as introducing iterative adjustment of prior probabilities in Maximum Likelihood classification, and improved topographic normalization (C-correction) of satellite data. Probability-based samples such as NFI, NILS and THUF provide data necessary for assignment of prior probabilities, estimation of continuous values, and are useful as training and validation data. For managed boreal forest stands, coarser pixel (60 m) AWiFS data were nearly as effective for stem volume estimation as SPOT 5 data (10 m). On the other hand, the most accurate classification of detailed alpine vegetation types (72.9% overall accuracy) was from SPOT 5 data combined with elevation derivatives, while classifications of Landsat TM (25 m), AWiFS, and MERIS (300 m) were less accurate. Non-parametric methods (e.g., random forests, decision/regression trees) produced higher classification accuracies than traditional parametric methods for alpine vegetation. The quantity of reference data affected classification accuracy, as more reference data produced higher map accuracy, although other factors such as distribution and quality of the reference data should be considered. As seen in this thesis, the characteristics of the landscape exert an influence on satellite and training data requirements, classification methods and resulting map accuracy.
机译:根据光学卫星数据创建准确的植被图需要使用参考数据来帮助解释或验证地图结果。参考数据可取自,例如,实地考察,航拍照片解释或地面库存。国家清单是在土地覆盖制图项目中有用的参考数据的潜在来源。本文通过结合使用光学卫星数据和清单数据来解决瑞典森林和高山植被的制图问题。研究了参考和卫星数据预处理,空间规模,参考数据的数量和质量以及分类方法等问题。像素大小在10到300 m范围内的光学卫星数据已与瑞典国家森林清单(NFI),瑞典国家景观清单(NILS)的参考数据一起使用,这是基于陆地生境监测计划( THUF)和林分数据库。结果包括对常见遥感方法的修改,例如在最大似然分类中引入对先验概率的迭代调整,以及改进的卫星数据的地形归一化(C校正)。 NFI,NILS和THUF等基于概率的样本提供了先验概率的分配,连续值的估计所必需的数据,并且可用作训练和验证数据。对于受管理的北方森林林分,较粗像素(60 m)的AWiFS数据对茎体积的估计几乎与SPOT 5数据(10 m)一样有效。另一方面,详细的高山植被类型(总准确度为72.9%)的最准确分类是来自SPOT 5数据加上海拔衍生物,而Landsat TM(25 m),AWiFS和MERIS(300 m)的分类较少准确。非参数方法(例如,随机森林,决策/回归树)对高山植被的分类精度高于传统参数方法。参考数据的数量会影响分类准确性,因为更多参考数据会产生更高的地图精度,尽管应该考虑其他因素,例如参考数据的分布和质量。如本文所见,景观的特征对卫星和训练数据的要求,分类方法以及由此产生的地图准确性产生影响。

著录项

  • 作者

    Reese Heather;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号