首页> 外文OA文献 >C-correction of optical satellite data over alpine vegetation areas : a comparison of sampling strategies for determining the empirical c-parameter
【2h】

C-correction of optical satellite data over alpine vegetation areas : a comparison of sampling strategies for determining the empirical c-parameter

机译:高山植被地区光学卫星数据的C校正:确定经验C参数的采样策略比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Semi-empirical topographic normalization methods (e.g., C-correction) have been widely used to correct illumination differences in optical satellite data. The objective of this study was to examine the precision and accuracy of the C-correction’s empirical parameter, c, as a function of the sample from which it was derived. Three sampling methods were compared: a random sample, a sample stratified on north and south aspects, and a sample stratified by cosine of the solar incidence angle, i. In the latter, power allocation was used to determine the quantity of observations for each stratum. Four overlapping satellite images were used (two Landsat 5 TM and two SPOT 5 HRG) with different acquisition dates and large solar zenith angles over an alpine region in Sweden. The sample stratified by cosine of i produced c with the highest precision from repeated trials and had coefficients of determination (R2) twice as high as those from the other sampling methods. Use of power allocation in the cosine of i stratified sample enabled better representation of spectral variability; this was particularly important for the NIR band where the outcome of c differed according to sampling method. Evaluations using t-tests and classification accuracy showed that c derived from the cosine of i stratified sample correctly normalized a larger percentage of the evaluation data. The distribution of cosine of i in the study area, the spectral variability and vegetation types exert influences to consider when sampling to derive c. Although sampling was restricted to alpine vegetation only, some vegetation classes may have benefitted from separate c-parameter calculation. In general, dry alpine heath and alpine grass heath had relatively higher c-parameters, mesic alpine heath was slightly lower, and alpine willow and alpine meadow had lower c-parameters for the near-infrared band. The cosine of i stratified sampling method using power allocation may be useful for calculation of c for vegetation conditions other than those presented here, as well as for other empirical parameters (e.g., Minnaert k).
机译:半经验地形归一化方法(例如C校正)已被广泛用于校正光学卫星数据中的照度差异。这项研究的目的是检验C校正的经验参数c的精确度和准确性,该经验参数c是从其得出的样本的函数。比较了三种采样方法:随机样本,在南北两方面分层的样本以及按太阳入射角的余弦分层的样本。在后者中,功率分配用于确定每个层的观测量。在瑞典的一个高山地区,使用了四个重叠的卫星图像(两个Landsat 5 TM和两个SPOT 5 HRG),它们具有不同的采集日期和较大的太阳天顶角。由i的余弦分层的样本通过反复试验产生的c精度最高,其测定系数(R2)是其他采样方法的两倍。在分层样本的余弦中使用功率分配可以更好地表示频谱变异性。对于c的结果根据采样方法而有所不同的NIR波段,这尤其重要。使用t检验和分类准确性进行的评估表明,从i分层样本的余弦中得出的c正确地归一化了较大比例的评估数据。 i在研究区域中的余弦分布,光谱变异性和植被类型都在影响采样时产生影响,以得出c。尽管采样仅限于高山植被,但某些植被类别可能已受益于单独的c参数计算。总体而言,干燥的高山荒地和高山草荒地的c参数相对较高,中生的高山荒地的c参数相对较低,而高山柳和高山草甸的近红外光谱c参数较低。使用功率分配的i分层采样方法的余弦可用于计算除此处介绍的植被条件以外的植被条件以及其他经验参数(例如Minnaert k)的c。

著录项

  • 作者

    Reese Heather; Olsson Håkan;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 swe
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号