首页> 外文OA文献 >Nonsingular factors of polynomial matrices and (A,B)-invariant subspaces
【2h】

Nonsingular factors of polynomial matrices and (A,B)-invariant subspaces

机译:多项式矩阵和(A,B)不变子空间的非奇异因子

摘要

Given a polynomial matrix B(s), we consider the class of nonsingular polynomial matrices L(s) such that B(s) = R(s)L(s) for some polynomial matrix R(s). It is shown that finding such factorizations is equivalent to finding (A,B)-invariant subspaces in the kernel of C where A,B,C are linear maps determined by B(s). In particular, the results yield, as a corollary, a method to determine simultaneously a row proper greatest right divisor of a left invertible polynomial matrix as well as the resulting polynomial matrix whose greatest right divisors are unimodular.The results also relate, the same way, such subspaces of constant systems (C,A,B) where (C,A) is observable and (A,B) is reachable, to the nonsingular right factors of the numerator polynomial matrices in coprime factorizations of the form D^-1 (s)B(s) of their transfer matrices.
机译:给定一个多项式矩阵B(s),我们考虑一类多项式矩阵R(s)的非奇异多项式矩阵L(s),使得B(s)= R(s)L(s)。结果表明,找到这样的因式分解等效于在C的内核中找到(A,B)不变子空间,其中A,B,C是由B(s)确定的线性映射。尤其是,结果必然会得出一种方法,该方法同时确定左可逆多项式矩阵的行合适的最大右除数以及最大右除数为单模的所得多项式矩阵。 ,其中常数系统(C,A,B)的此类子空间对于D ^ -1形式的互质分解的分子多项式矩阵的非奇异右因子,其中(C,A)是可观察的,并且(A,B)是可到达的转移矩阵的(s)B(s)。

著录项

  • 作者

    Emre E;

  • 作者单位
  • 年度 1978
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号