首页> 外文OA文献 >Three-dimensional mapping with time-of-flight cameras
【2h】

Three-dimensional mapping with time-of-flight cameras

机译:飞行时间相机的三维映射

摘要

This article investigates the use of time-of-flight (ToF) cameras in mapping tasks for autonomous mobile robots, in particular in simultaneous localization and mapping (SLAM) tasks. Although ToF cameras are in principle an attractive type of sensor for three-dimensional (3D) mapping owing to their high rate of frames of 3D data, two features make them difficult as mapping sensors, namely, their restricted field of view and influences on the quality of range measurements by high dynamics in object reflectivity; in addition, currently available models suffer from poor data quality in a number of aspects. The paper first summarizes calibration and filtering approaches for improving the accuracy, precision, and robustness of ToF cameras independent of their intended usage. Then, several ego motion estimation approaches are applied or adapted, respectively, in order to provide a performance benchmark for registering ToF camera data. As a part of this, an extension to the iterative closest point algorithm has been developed that increases the robustness under restricted field of view and under larger displacements. Using an indoor environment, the paper provides results from SLAM experiments using these approaches in comparison. It turns out that the application of ToF cameras is feasible to SLAM tasks, although this type of sensor has a complex error characteristic
机译:本文研究了飞行时间(ToF)相机在自动移动机器人的制图任务中的使用,尤其是在同时定位和制图(SLAM)任务中的使用。尽管ToF摄像机由于其3D数据帧的高速率原理上是吸引人的用于三维(3D)映射的传感器类型,但是两个功能使它们难以作为映射传感器,即,其受限的视野和对传感器的影响物体反射率的高动态范围测量的质量;另外,当前可用的模型在许多方面都遭受不良数据质量的困扰。本文首先概述了校准和滤波方法,这些方法可提高ToF摄像机的精度,精度和鲁棒性,而与预期用途无关。然后,分别应用或调整几种自我运动估计方法,以提供用于注册ToF相机数据的性能基准。作为其一部分,已经开发了对迭代最近点算法的扩展,该算法增加了在受限视场和较大位移下的鲁棒性。在室内环境下,本文提供了使用这些方法进行比较的SLAM实验的结果。事实证明,ToF摄像机的应用对于SLAM任务是可行的,尽管这种类型的传感器具有复杂的误差特征

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号