首页> 外文OA文献 >Intersection detection based on qualitative spatial reasoning on stopping point clusters
【2h】

Intersection detection based on qualitative spatial reasoning on stopping point clusters

机译:基于定性空间推理的停车点簇相交检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The purpose of this research is to propose and test a method for detecting intersections by analysing collectively acquired trajectories of moving vehicles. Instead of solely relying on the geometric features of the trajectories, such as heading changes, which may indicate turning points and consequently intersections, we extract semantic features of the trajectories in form of sequences of stops and moves. Under this spatiotemporal prism, the extracted semantic information which indicates where vehicles stop can reveal important locations, such as junctions. The advantage of the proposed approach in comparison with existing turning-points oriented approaches is that it can detect intersections even when not all the crossing road segments are sampled and therefore no turning points are observed in the trajectories. The challenge with this approach is that first of all, not all vehicles stop at the same location – thus, the stop-location is blurred along the direction of the road; this, secondly, leads to the effect that nearby junctions can induce similar stop-locations. As a first step, a density-based clustering is applied on the layer of stop observations and clusters of stop events are found. Representative points of the clusters are determined (one per cluster) and in a last step the existence of an intersection is clarified based on spatial relational cluster reasoning, with which less informative geospatial clusters, in terms of whether a junction exists and where its centre lies, are transformed in more informative ones. Relational reasoning criteria, based on the relative orientation of the clusters with their adjacent ones are discussed for making sense of the relation that connects them, and finally for forming groups of stop events that belong to the same junction.
机译:这项研究的目的是提出和测试一种通过分析共同采集的运动车辆的轨迹来检测交叉口的方法。我们不仅仅依赖于轨迹的几何特征(例如航向变化)来指示转折点并因此指示相交,而是以停顿和移动的顺序的形式提取轨迹的语义特征。在这个时空棱镜下,指示车辆停在哪里的提取的语义信息可以显示重要的位置,例如路口。与现有的面向转折点的方法相比,该方法的优点在于,即使不是对所有交叉路段都进行了采样,因此它也可以检测到交叉路口,因此在轨迹中没有观察到转折点。这种方法的挑战在于,首先,并非所有车辆都停在同一位置–因此,停放位置沿道路方向变得模糊;其次,这导致附近的路口会诱发类似的停靠站。第一步,在停止观测层上应用基于密度的聚类,并找到停止事件的集群。确定聚类的代表点(每个聚类一个),并在最后一步中,基于空间关系聚类推理阐明交点的存在,根据交集是否存在以及交点的中心,信息量较少的地理空间聚类,转换为内容更丰富的内容。讨论了基于群集与其相邻群集的相对方向的关系推理标准,以了解连接它们的关系,并最终形成属于同一连接点的停止事件组。

著录项

  • 作者

    Zourlidou S.; Sester Monika;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号