首页> 外文OA文献 >Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
【2h】

Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval

机译:图像检索中基于支持向量机的相关反馈的非对称装袋和随机子空间

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Relevance feedback schemes based on support vector machines (SVM) have been widely used in content-based image retrieval (CBIR). However, the performance of SVM-based relevance feedback is often poor when the number of labeled positive feedback samples is small. This is mainly due to three reasons: 1) an SVM classifier is unstable on a small-sized training set, 2) SVM's optimal hyperplane may be biased when the positive feedback samples are much less than the negative feedback samples, and 3) overfitting happens because the number of feature dimensions is much higher than the size of the training set. In this paper, we develop a mechanism to overcome these problems. To address the first two problems, we propose an asymmetric bagging-based SVM (AB-SVM). For the third problem, we combine the random subspace method and SVM for relevance feedback, which is named random subspace SVM (RS-SVM). Finally, by integrating AB-SVM and RS-SVM, an asymmetric bagging and random subspace SVM (ABRS-SVM) is built to solve these three problems and further improve the relevance feedback performance.
机译:基于支持向量机(SVM)的相关性反馈方案已广泛用于基于内容的图像检索(CBIR)。但是,当标记的正反馈样本数量很少时,基于SVM的相关性反馈的性能通常很差。这主要是由于以下三个原因:1)SVM分类器在小型训练集上不稳定,2)当正反馈样本比负反馈样本少得多时,SVM的最优超平面可能会出现偏差,以及3)过度拟合因为特征尺寸的数量远高于训练集的大小。在本文中,我们开发了一种克服这些问题的机制。为了解决前两个问题,我们提出了一种基于不对称装袋的SVM(AB-SVM)。对于第三个问题,我们将随机子空间方法和SVM结合用于相关性反馈,这被称为随机子空间SVM(RS-SVM)。最后,通过集成AB-SVM和RS-SVM,构建了不对称装袋和随机子空间SVM(ABRS-SVM),以解决这三个问题并进一步提高相关性反馈性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号