首页> 外文期刊>Image Processing, IET >Relevance feedback approach for image retrieval combining support vector machines and adapted Gaussian mixture models
【24h】

Relevance feedback approach for image retrieval combining support vector machines and adapted Gaussian mixture models

机译:结合支持向量机和自适应高斯混合模型进行图像检索的相关反馈方法

获取原文
获取原文并翻译 | 示例

摘要

A new relevance feedback (RF) approach for content-based image retrieval (CBIR) is presented, which uses Gaussian mixture (GM) models as image representations. The GM of each image is obtained as an adaptation of a universal GM which models the probability distribution of the features of the image database. In each RF round, the positive and negative examples provided by the user until the current round are used to train a support vector machine (SVM) to distinguish between the relevant and irrelevant images according to the preferences of the user. In order to quantify the similarity between two images represented as GMs, Kullback-Leibler (KL) approximations are employed, the computation of which can be further accelerated taking advantage from the fact that the GMs of the images are all refined from a common model. An appropriate kernel function, based on this distance between GMs, is used to make possible the incorporation of GMs in the SVM framework. Finally, comparative numerical experiments that demonstrate the merits of the proposed RF methodology and the advantages of using GMs for image modelling are provided.
机译:提出了一种基于内容的图像检索(CBIR)的新的相关反馈(RF)方法,该方法使用高斯混合(GM)模型作为图像表示。获得每个图像的GM作为通用GM的改编,该通用GM对图像数据库特征的概率分布进行建模。在每个RF回合中,直到当前回合为止,用户提供的正例和负例用于训练支持向量机(SVM),以根据用户的偏好区分相关图像和不相关图像。为了量化表示为GM的两个图像之间的相似性,采用了Kullback-Leibler(KL)近似,可以利用图像的GM全部从通用模型中精炼这一事实来进一步加快计算速度。基于GM之间的距离,适当的内核功能可用于将GM合并到SVM框架中。最后,提供了比较数值实验,这些实验证明了所提出的RF方法的优点以及使用GM进行图像建模的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号