首页> 外文OA文献 >Competitive Repetition Suppression (CoRe) Clustering: A Biologically Inspired Learning Model With Application to Robust Clustering
【2h】

Competitive Repetition Suppression (CoRe) Clustering: A Biologically Inspired Learning Model With Application to Robust Clustering

机译:竞争性重复抑制(CoRe)聚类:一种生物学启发的学习模型,适用于鲁棒聚类

摘要

Determining a compact neural coding for a set of input stimuli is an issue that encompasses several biological memory mechanisms as well as various artificial neural network models. In particular, establishing the optimal network structure is still an open problem when dealing with unsupervised learning models. In this paper, we introduce a novel learning algorithm, named competitive repetition-suppression (CoRe) learning, inspired by a cortical memory mechanism called repetition suppression (RS). We show how such a mechanism is used, at various levels of the cerebral cortex, to generate compact neural representations of the visual stimuli. From the general CoRe learning model, we derive a clustering algorithm, named CoRe clustering, that can automatically estimate the unknown cluster number from the data without using a priori information concerning the input distribution. We illustrate how CoRe clustering, besides its biological plausibility, posses strong theoretical properties in terms of robustness to noise and outliers, and we provide an error function describing CoRe learning dynamics. Such a description is used to analyze CoRe relationships with the state-of-the art clustering models and to highlight CoRe similitude with rival penalized competitive learning (RPCL), showing how CoRe extends such a model by strengthening the rival penalization estimation by means of loss functions from robust statistics
机译:确定用于一组输入刺激的紧凑神经编码是一个问题,涉及多个生物记忆机制以及各种人工神经网络模型。特别是,在处理无监督学习模型时,建立最佳网络结构仍然是一个未解决的问题。在本文中,我们介绍了一种新颖的学习算法,称为竞争性重复抑制(CoRe)学习,其灵感来自称为重复抑制(RS)的皮质记忆机制。我们展示了如何在大脑皮层的各个层次上使用这种机制来生成视觉刺激的紧凑神经表示。从通用的CoRe学习模型中,我们得出一种名为CoRe聚类的聚类算法,该算法可以自动从数据中估计未知聚类数,而无需使用有关输入分布的先验信息。我们说明了CoRe聚类除具有生物学上的合理性外,还具有强大的理论特性(对噪声和异常值的鲁棒性),并且提供了描述CoRe学习动态的误差函数。这样的描述用于分析CoRe与最新的聚类模型之间的关系,并通过竞争对手的惩罚性竞争学习(RPCL)突出显示CoRe的相似性,从而说明CoRe如何通过通过损失加强竞争对手的惩罚性估计来扩展此类模型强大的统计功能

著录项

  • 作者

    D. Bacciu; A. Starita;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号