首页> 外文OA文献 >Towards the Discrimination of Primary and Secondary Headache: An Intelligent Systems Approach
【2h】

Towards the Discrimination of Primary and Secondary Headache: An Intelligent Systems Approach

机译:区分原发性和继发性头痛:一种智能系统方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the use of intelligent systems to address the long-standing medical problem of diagnostic differentiation between harmful (secondary) and benign (primary) headache conditions. In secondary headaches, the condition is caused by an underlying pathology, in contrast to primary headaches where the production of pain represents the sole constituent of the disorder. Conventional diagnostic paradigms carry an unacceptable risk of misdiagnosis, leaving patients open to potentially catastrophic consequences. Intelligent systems approaches, grounded in artificial intelligence, are adopted in this study as a potential means to unite contributions from multiple settings, including medicine, the life sciences, pervasive computation, sensor technologies, and autonomous intelligent agency, in the fight against headache uncertainty. In this paper, we therefore present the first steps in our research towards a data intensive, unified approach to headache dichotomisation. We begin by presenting a background to headache and its classification, followed by analysis of the space of confounding symptoms, in addition to the problem of primary and secondary condition discrimination. Finally, we proceed to report results of a preliminary case study, in which the epileptic seizure is considered as a manifestation of a headache generating neuropathology. It was found that our classification approach, based on supervised machine learning, represents a promising direction, with a best area under curve test outcome of 0.915. We conclude that intelligent systems, in conjunction with biosignals, could be suitable for classification of a more general set of pathologies, while facilitating the medicalisation of arbitrary settings.
机译:我们考虑使用智能系统来解决长期存在的医疗问题,即在诊断性(继发性)和良性(原发性)头痛病之间进行鉴别诊断。在继发性头痛中,病情是由潜在的病理学引起的,而与原发性头痛相反,原发性头痛是疼痛的唯一代表。常规的诊断范式带来了无法接受的误诊风险,使患者容易遭受潜在的灾难性后果。在这项研究中,以人工智能为基础的智能系统方法被用作一种潜在的方法,可以将多种设置(包括医学,生命科学,普适计算,传感器技术和自主智能代理)的贡献结合起来,以应对头痛的不确定性。因此,在本文中,我们介绍了迈向数据密集型头痛二分法统一方法的研究的第一步。我们首先介绍了头痛的背景及其分类,然后分析了混杂症状的空间,以及原发性和继发性状况的歧视问题。最后,我们继续报告初步病例研究的结果,其中癫痫性癫痫发作被认为是产生头痛的神经病理学表现。我们发现,基于监督机器学习的分类方法代表了一个有希望的方向,曲线测试结果的最佳面积为0.915。我们得出的结论是,智能系统与生物信号结合,可能适用于对更一般的病理学分类,同时促进任意环境的医学化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号