首页> 外文OA文献 >Contraction Properties of VLSI Cooperative Competitive Neural Networks of Spiking Neurons
【2h】

Contraction Properties of VLSI Cooperative Competitive Neural Networks of Spiking Neurons

机译:尖峰神经元的VLSI合作竞争神经网络的收缩特性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A non–linear dynamic system is called contracting if initial conditions are forgotten exponentially fast, so that all trajectories converge to a single trajectory. We use contraction theory to derive an upper bound for the strength of recurrent connections that guarantees contraction for complex neural networks. Specifically, we apply this theory to a special class of recurrent networks, often called Cooperative Competitive Networks (CCNs), which are an abstract representation of the cooperative-competitive connectivity observed in cortex. This specific type of network is believed to play a major role in shaping cortical responses and selecting the relevant signal among distractors and noise. In this paper, we analyze contraction of combined CCNs of linear threshold units and verify the results of our analysis in a hybrid analog/digital VLSI CCN comprising spiking neurons and dynamic synapses.
机译:如果初始条件被指数级地快速忘记,则非线性动态系统称为收缩,因此所有轨迹都收敛到单个轨迹。我们使用收缩理论来得出循环连接强度的上限,以确保复杂神经网络的收缩。具体来说,我们将此理论应用于一类特殊的循环网络,通常称为合作竞争网络(CCN),这是在皮层中观察到的合作竞争竞争性的抽象表示。据信这种特定类型的网络在塑造皮层反应以及在干扰物和噪声中选择相关信号方面起着重要作用。在本文中,我们分析了线性阈值单元的组合CCN的收缩,并在包含尖峰神经元和动态突触的混合模拟/数字VLSI CCN中验证了我们的分析结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号