首页> 外文期刊>Neural computation >Classification of Correlated Patterns with a Configurable Analog VLSI Neural Network of Spiking Neurons and Self-Regulating Plastic Synapses
【24h】

Classification of Correlated Patterns with a Configurable Analog VLSI Neural Network of Spiking Neurons and Self-Regulating Plastic Synapses

机译:可配置的模拟神经元神经网络和自调节塑料突触的可配置模拟VLSI神经网络对相关模式的分类

获取原文
获取原文并翻译 | 示例

摘要

We describe the implementation and illustrate the learning performance of an analog VLSI network of 32 integrate-and-fire neurons with spike-frequency adaptation and 2016 Hebbian bistable spike-driven stochastic synapses, endowed with a self-regulating plasticity mechanism, which avoids unnecessary synaptic changes. The synap-tic matrix can be flexibly configured and provides both recurrent and external connectivity with address-event representation compliant devices. We demonstrate a marked improvement in the efficiency of the network in classifying correlated patterns, owing to the self-regulating mechanism.
机译:我们描述了实现方式并说明了32个具有尖峰频率适应性的集成激发火神经元和2016 Hebbian双稳态尖峰驱动随机突触的模拟VLSI网络的学习性能,该网络具有自调节可塑性机制,可避免不必要的突触变化。突触矩阵可以灵活配置,并提供与地址事件表示兼容设备的经常性连接和外部连接。由于自我调节机制,我们证明了在分类相关模式方面网络效率的显着提高。

著录项

  • 来源
    《Neural computation》 |2009年第11期|3106-3129|共24页
  • 作者单位

    Italian National Institute of Health, Rome 00161, Italy;

    Italian National Institute of Health, Rome 00191, Italy, and Universitat Pompeu Fabra, 08018 Barcelona, Spain;

    INFN-RM2, Rome 00133, Italy;

    Italian National Institute of Health, Rome 00161, Italy, and INFN-RM1, Rome 00185, Italy;

    Italian National Institute of Health, Rome 00161, Italy, and INFN-RM1, Rome 00185, Italy;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号