首页> 外文期刊>Neural computation >A Systematic M ethod for Configuring VLSI Networks of Spiking Neurons
【24h】

A Systematic M ethod for Configuring VLSI Networks of Spiking Neurons

机译:配置尖峰神经元VLSI网络的系统方法

获取原文
获取原文并翻译 | 示例

摘要

An increasing number of research groups are developing custom hybrid analog/digital very large scale integration (VLSI) chips and systems that implement hundreds to thousands of spiking neurons with biophysically realistic dynamics, with the intention of emulating brainlike real-world behavior in hardware and robotic systems rather than simply simulating their performance on general-purpose digital computers. Although the electronic engineering aspects of these emulation systems is proceeding well, progress toward the actual emulation of brainlike tasks is restricted by the lack of suitable high-level configuration methods of the kind that have already been developed over many decades for simulations on general-purpose computers. The key difficulty is that the dynamics of the CMOS electronic analogs are determined by transistor biases that do not map simply to the parameter types and values used in typical abstract mathematical models of neurons and their networks. Here we provide a general method for resolving this difficulty. We describe a parameter mapping technique that permits an automatic configuration of VLSI neural networks so that their electronic emulation conforms to a higher-level neuronal simulation. We show that the neurons configured by our method exhibit spike timing statistics and temporal dynamics that are the same as those observed in the software simulated neurons and, in particular, that the key parameters of recurrent VLSI neural networks (e.g., implementing soft winner-take-all) can be precisely tuned. The proposed method permits a seamless integration between software simulations with hardware emulations and intertranslatability between the parameters of abstract neuronal models and their emulation counterparts. Most important, our method offers a route toward a high-level task configuration language for neuromorphic VLSI systems.
机译:越来越多的研究小组正在开发定制的混合模拟/数字超大规模集成(VLSI)芯片和系统,这些芯片和系统以生理上逼真的动态实现数百到数千个尖峰神经元,目的是在硬件和机器人中模拟类似于大脑的真实世界的行为系统,而不是简单地在通用数字计算机上模拟其性能。尽管这些仿真系统的电子工程方面进展顺利,但由于缺乏合适的高级配置方法(已经开发了数十年,用于通用仿真),限制了对类似脑任务的实际仿真的进展。电脑。关键的困难在于,CMOS电子模拟的动态性是由晶体管偏置决定的,这些偏置并不简单地映射到神经元及其网络的典型抽象数学模型中使用的参数类型和值。在这里,我们提供了解决此难题的通用方法。我们描述了一种参数映射技术,该技术允许VLSI神经网络的自动配置,以便其电子仿真符合更高级别的神经元仿真。我们显示,通过我们的方法配置的神经元表现出与软件模拟的神经元中观察到的相同的尖峰时序统计信息和时间动态,尤其是循环VLSI神经网络的关键参数(例如,实现软赢家) -all)可以精确调整。所提出的方法允许软件仿真与硬件仿真之间的无缝集成,以及抽象神经元模型的参数与其仿真副本之间的可互译性。最重要的是,我们的方法为神经形态VLSI系统提供了通往高级任务配置语言的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号