首页> 外文OA文献 >An LDA and probability-based classifier for the diagnosis of Alzheimer's Disease from structural MRI
【2h】

An LDA and probability-based classifier for the diagnosis of Alzheimer's Disease from structural MRI

机译:LDA和基于概率的分类器从结构MRI诊断阿尔茨海默氏病

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper a custom classification algorithm basedudon linear discriminant analysis and probability-based weightsudis implemented and applied to the hippocampus measurementsudof structural magnetic resonance images from healthy subjectsudand Alzheimer’s Disease sufferers; and then attempts to diagnoseudthem as accurately as possible. The classifier works by classifyingudeach measurement of a hippocampal volume as healthy controlsizedudor Alzheimer’s Disease-sized, these new features are thenudweighted and used to classify the subject as a healthy controludor suffering from Alzheimer’s Disease. The preliminary resultsudobtained reach an accuracy of 85.8% and this is a similarudaccuracy to state-of-the-art methods such as a Naive Bayesudclassifier and a Support Vector Machine. An advantage of theudmethod proposed in this paper over the aforementioned state of the art udclassifiers is the descriptive ability of the classificationsudit produces. The descriptive model can be of great help to aid auddoctor in the diagnosis of Alzheimer’s Disease, or even further theudunderstand of how Alzheimer’s Disease affects the hippocampus.
机译:本文采用了基于 udon线性判别分析和基于概率的权重的自定义分类算法 udis,并将其应用于海马的测量结果 udd健康受试者的结构磁共振图像 udand阿尔茨海默氏病患者;然后尝试尽可能准确地诊断检测。分类器通过将海马体积的测量分类为健康对照或阿尔茨海默氏病大小来工作,然后加权这些新功能并将其用于将受试者分类为患有阿尔茨海默氏病的健康对照 udor。初步结果获得的准确度达到85.8%,这与诸如Naive Bayes udclassifier和Support Vector Machine这样的最新方法类似。本文提出的udud方法相对于前面提到的ududifiers的一个优势是分类udit的描述能力。描述性模型可以极大地帮助医生诊断阿尔茨海默氏病,甚至可以进一步理解阿尔茨海默氏病如何影响海马体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号