首页> 外文OA文献 >Stochastic climate theory and modeling
【2h】

Stochastic climate theory and modeling

机译:随机气候理论与模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Stochastic methods are a crucial area in contemporary climate research and are increasingly being used in comprehensive weather and climate prediction models as well as reduced order climate models. Stochastic methods are used as subgrid-scale parameterizations (SSPs) as well as for model error representation, uncertainty quantification, data assimilation, and ensemble prediction. The need to use stochastic approaches in weather and climate models arises because we still cannot resolve all necessary processes and scales in comprehensive numerical weather and climate prediction models. In many practical applications one is mainly interested in the largest and potentially predictable scales and not necessarily in the small and fast scales. For instance, reduced order models can simulate and predict large-scale modes. Statistical mechanics and dynamical systems theory suggest that in reduced order models the impact of unresolved degrees of freedom can be represented by suitable combinations of deterministic and stochastic components and non-Markovian (memory) terms. Stochastic approaches in numerical weather and climate prediction models also lead to the reduction of model biases. Hence, there is a clear need for systematic stochastic approaches in weather and climate modeling. In this review, we present evidence for stochastic effects in laboratory experiments. Then we provide an overview of stochastic climate theory from an applied mathematics perspective. We also survey the current use of stochastic methods in comprehensive weather and climate prediction models and show that stochastic parameterizations have the potential to remedy many of the current biases in these comprehensive models.
机译:随机方法是当代气候研究的关键领域,越来越多地用于综合天气和气候预测模型以及降序气候模型中。随机方法不仅用作子网格规模参数化(SSP),还用于模型误差表示,不确定性量化,数据同化和整体预测。由于我们仍然无法解决全面的数值天气预报和气候预测模型中的所有必要过程和规模,因此出现了在天气和气候模型中使用随机方法的需求。在许多实际应用中,人们主要对最大且潜在可预测的规模感兴趣,而不必对小型和快速规模感兴趣。例如,降阶模型可以模拟和预测大规模模式。统计力学和动力学系统理论表明,在降阶模型中,未解决的自由度的影响可以通过确定性和随机性成分以及非马尔可夫(记忆)项的适当组合来表示。数值天气和气候预测模型中的随机方法还可以减少模型偏差。因此,在天气和气候建模中显然需要系统的随机方法。在这篇综述中,我们提供了实验室实验中随机效应的证据。然后,我们从应用数学的角度对随机气候理论进行概述。我们还调查了在综合的天气和气候预测模型中当前使用随机方法的情况,并表明随机参数化有可能纠正这些综合模型中的许多当前偏差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号